Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A new matrix inverse


Author: C. Krattenthaler
Journal: Proc. Amer. Math. Soc. 124 (1996), 47-59
MSC (1991): Primary 15A09, 33D20, 33C20; Secondary 05A10, 05A19, 05A30, 11B65, 33C70
DOI: https://doi.org/10.1090/S0002-9939-96-03042-0
MathSciNet review: 1291781
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We compute the inverse of a specific infinite-dimensional matrix, thus unifying a number of previous matrix inversions. Our inversion theorem is applied to derive a number of summation formulas of hypergeometric type.


References [Enhancements On Off] (What's this?)

  • 1. G. E. Andrews, Connection coefficient problems and partitions, Proc. Sympos. Pure Math. (D. Ray-Chaudhuri, ed.), vol. 34, Amer. Math. Soc., Providence, RI, 1979, pp. 1--24. MR 80c:33004
  • 2. W. N. Bailey, Some identities in combinatory analysis, Proc. London Math. Soc. (2) 49 (1947), 421--435. MR 9:263d
  • 3. ------, Identities of the Roger--Ramanujan type, Proc. London Math. Soc. (2) 50 (1949), 1--10. MR 9:585b
  • 4. D. M. Bressoud, Some identities for terminating q--series, Math. Proc. Cambridge Philos. Soc. 89 (1981), 211--223. MR 82d:05019
  • 5. ------, A matrix inverse, Proc. Amer. Math. Soc. 88 (1983), 446--448. MR 84g:33003
  • 6. L. Carlitz, Some inverse relations, Duke Math. J. 40 (1973), 893--901. MR 49:2420
  • 7. G. P. Egorychev, Integral representation and the computation of combinatorial sums, ``Nauka" Sibirsk. Otdel., Novosibirsk, 1977; English transl., Transl. of Math. Monographs, vol. 59, Amer. Math. Soc., Providence, RI, 1984 . MR 58:10474
  • 8. G. Gasper, Summation, transformation, and expansion formulas for bibasic series, Trans. Amer. Math. Soc. 312 (1989), 257--278. MR 89g:33012
  • 9. G. Gasper and M. Rahman, An indefinite bibasic summation formula and some quadratic, cubic and quartic summation and transformation formulae, Canad. J. Math. 42 (1990), 1--27. MR 90k:33032
  • 10. ------, Basic hypergeometric series, Encyclopedia Math. Appl., vol. 35, Cambridge Univ. Press, Cambridge, 1990. MR 91d:33034
  • 11. I. Gessel and D. Stanton, Application of q--Lagrange inversion to basic hypergeometric series, Trans. Amer. Math. Soc. 277 (1983), 173--203. MR 84f:33009
  • 12. H. W. Gould, A series transformation for finding convolution identities, Duke Math. J. 28 (1961), 193--202. MR 23:A1216
  • 13. ------, A new convolution formula and some new orthogonal relations for inversion of series, Duke Math. J. 29 (1962), 393--404. MR 25:3333
  • 14. ------, A new series transform with application to Bessel, Legrende, and Tchebychev polynomials, Duke Math. J. 31 (1964), 325--334. MR 28:4272
  • 15. ------, Inverse series relations and other expansions involving Humbert polynomials, Duke Math. J. 32 (1965), 691--711. MR 32:5948
  • 16. H. W. Gould and L. C. Hsu, Some new inverse series relations, Duke Math. J. 40 (1973), 885--891. MR 49:2421
  • 17. R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete mathematics, Addison-Wesley, Reading, MA, 1989. MR 91f:00001
  • 18. C. Krattenthaler, Operator methods and Lagrange inversion, a unified approach to Lagrange formulas, Trans. Amer. Math. Soc. 305 (1988), 431--465. MR 89d:05017
  • 19. M. Rahman, Some quadratic and cubic summation formulas for basic hypergeometric series, Canad. J. Math. 45 (1993), 394--411. MR 94d:33015
  • 20. ------, Some cubic summation formulas for basic hypergeometric series, Utilitas Math. 36 (1989), 161--172. MR 91c:33030
  • 21. J. Riordan, Combinatorial identities, J. Wiley, New York, 1968. MR 38:53
  • 22. D. Singer, $q$-analogues of Lagrange inversion, Ph.D. Thesis, Univ. of California, San Diego, CA, 1992.
  • 23. L. J. Slater, Generalized hypergeometric functions, Cambridge Univ. Press, Cambridge, 1966. MR 34:1570
  • 24. A. Verma and V. K. Jain, Transformations of nonterminating basic hypergeometric series, their contour integrals and applications to Rogers--Ramanujan identities, J. Math. Anal. Appl. 87 (1982), 9--44. MR 83e:33002

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 15A09, 33D20, 33C20, 05A10, 05A19, 05A30, 11B65, 33C70

Retrieve articles in all journals with MSC (1991): 15A09, 33D20, 33C20, 05A10, 05A19, 05A30, 11B65, 33C70


Additional Information

C. Krattenthaler
Affiliation: Institut für Mathematik der Universität Wien, Strudlhofgasse 4, A-1090 Wien Austria
Email: kratt@pap.univie.ac.at

DOI: https://doi.org/10.1090/S0002-9939-96-03042-0
Keywords: Matrix inversion, inverse relations
Communicated by: Louis J. Ratliff, Jr.
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society