Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Removability of the singular set
of the heat flow of harmonic maps


Authors: Yunmei Chen and Livio Flaminio
Journal: Proc. Amer. Math. Soc. 124 (1996), 513-525
MSC (1991): Primary 35B65, 35D10, 49N60, 35Kxx, 58E20, 58G11
MathSciNet review: 1307502
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the singular set of a weak stationary solution $u$ of the heat flow of harmonic maps between Riemannian manifolds $M$ and $N$, with $N$ compact, is removable if it has ``parabolic codimension'' greater than two and the initial energy $E(u_0)$ is sufficiently small.


References [Enhancements On Off] (What's this?)

  • 1 Fabrice Bethuel, On the singular set of stationary harmonic maps, Manuscripta Math. 78 (1993), no. 4, 417–443. MR 1208652, 10.1007/BF02599324
  • 2 Y. Chen, J. Li, and F. H. Lin Partial regularity for weak heat flows into spheres, Comm. Pure Appl. Math. (to appear).
  • 3 Yun Mei Chen and Michael Struwe, Existence and partial regularity results for the heat flow for harmonic maps, Math. Z. 201 (1989), no. 1, 83–103. MR 990191, 10.1007/BF01161997
  • 4 J.-M. Coron, Nonuniqueness for the heat flow of harmonic maps, Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990), no. 4, 335–344 (English, with French summary). MR 1067779
  • 5 James Eells Jr. and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109–160. MR 0164306
  • 6 Lawrence C. Evans, Partial regularity for stationary harmonic maps into spheres, Arch. Rational Mech. Anal. 116 (1991), no. 2, 101–113. MR 1143435, 10.1007/BF00375587
  • 7 M. Feldman Partial regularity for harmonic maps of evolution into spheres, preprint (1994).
  • 8 Frédéric Hélein, Régularité des applications faiblement harmoniques entre une surface et une sphère, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), no. 9, 519–524 (French, with English summary). MR 1078114
  • 9 Frédéric Hélein, Régularité des applications faiblement harmoniques entre une surface et une variété riemannienne, C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), no. 8, 591–596 (French, with English summary). MR 1101039
  • 10 Jürgen Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math. 17 (1964), 101–134. MR 0159139
  • 11 L. Mou Removability of singular sets of harmonic maps, preprint, 1993.
  • 12 Richard M. Schoen, Analytic aspects of the harmonic map problem, Seminar on nonlinear partial differential equations (Berkeley, Calif., 1983), Math. Sci. Res. Inst. Publ., vol. 2, Springer, New York, 1984, pp. 321–358. MR 765241, 10.1007/978-1-4612-1110-5_17
  • 13 L. Simon Singularities of geometric variational problems, Graduate Summer School Lecture at Stanford, 1993.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 35B65, 35D10, 49N60, 35Kxx, 58E20, 58G11

Retrieve articles in all journals with MSC (1991): 35B65, 35D10, 49N60, 35Kxx, 58E20, 58G11


Additional Information

Yunmei Chen
Affiliation: Department of Mathematics, University of Florida, Gainesville, Florida 32611
Email: yunmei@math.ufl.edu

Livio Flaminio
Affiliation: Department of Mathematics, University of Florida, Gainesville, Florida 32611
Email: flaminio@math.ufl.edu

DOI: http://dx.doi.org/10.1090/S0002-9939-96-03169-3
Keywords: Heat flow, harmonic maps
Received by editor(s): September 4, 1994
Additional Notes: The first author was supported by NSF grant #DMS-9101911
Communicated by: Peter Li
Article copyright: © Copyright 1996 American Mathematical Society