A theorem of Briançon-Skoda type

for regular local rings containing a field

Authors:
Ian M. Aberbach and Craig Huneke

Journal:
Proc. Amer. Math. Soc. **124** (1996), 707-713

MSC (1991):
Primary 13H05; Secondary 13A35, 13B22

DOI:
https://doi.org/10.1090/S0002-9939-96-03058-4

MathSciNet review:
1301483

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a regular local ring containing a field. We give a refinement of the Briançon-Skoda theorem showing that if is a minimal reduction of where is -primary, then where and is the largest ideal such that . The proof uses tight closure in characteristic and reduction to characteristic for rings containing the rationals.

**[AH]**I. M. Aberbach and C. Huneke,*An improved Briançon-Skoda theorem with applications to the Cohen-Macaulayness of Rees rings*, Math. Ann.**297**(1993), 343--369. MR**95b:13005****[AHT]**I. M. Aberbach, C. Huneke, and N. V. Trung,*Reduction numbers, Briançon-Skoda theorems and the depth of Rees rings*, Compositio Math.**97**(1995), 403--434.**[Ar]**M. Artin,*Algebraic structure of power series rings*, Contemp. Math.**13**(1982), 223--227. MR**84b:13014****[BS]**J. Briançon and H. Skoda,*Sur la clôture intégrale d'un idéal de germes de fonctions holomorphes en un point de*, C. R. Acad. Sci. Paris Sér. A**278**(1974), 949--951. MR**49:5394****[HH]**M. Hochster and C. Huneke,*Tight closure, invariant theory, and the Briançon-Skoda theorem*, J. Amer. Math. Soc.**3**(1990), 31--116. MR**91g:13010****[Hu]**C. Huneke,*Hilbert functions and symbolic powers*, Michigan Math. J.**34**(1987), 293--318. MR**89b:13037****[HS]**C. Huneke and I. Swanson,*Cores of ideals in two-dimensional regular local rings*, Michigan Math. J.**42**(1995), 193--208.**[It]**S. Itoh,*Integral closures of ideals generated by regular sequences*, J. Algebra**117**(1988), 390--401. MR**90g:13013****[L]**J. Lipman,*Adjoints of ideals in regular local rings*, Math. Res. Letters**1**(1994), 1--17. CMP**95:05****[LS]**J. Lipman and A. Sathaye,*Jacobian ideals and a theorem of Briançon-Skoda*, Michigan Math. J.**28**(1981). MR**83m:13001****[LT]**J. Lipman and B. Teissier,*Pseudo-rational local rings and a theorem of Briançon-Skoda about integral closures of ideals*, Michigan Math. J.**28**(1981), 97--116. MR**82f:14004****[NR]**S. Northcott and D. Rees,*Reductions of ideals in local rings*, Math. Proc. Cambridge Philos. Soc.**50**(1954), 145--158. MR**15:596a****[RS]**D. Rees and J. Sally,*General elements and joint reductions*, Michigan Math. J.**35**(1988), 241--254. MR**89h:13034****[Sp]**M. Spivakovsky,*Smoothing of ring homomorphisms, approximation theorems and the Bass-Quillen conjecture*, preprint.**[Sw]**I. Swanson,*Joint reductions, tight closure, and the Briançon-Skoda theorem*, J. Algebra**147**(1992), 128--136. MR**93g:13001**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
13H05,
13A35,
13B22

Retrieve articles in all journals with MSC (1991): 13H05, 13A35, 13B22

Additional Information

**Ian M. Aberbach**

Affiliation:
Department of Mathematics, University of Missouri, Columbia, Missouri 65211

Email:
aberbach@msindy8.cs.missouri.edu

**Craig Huneke**

Affiliation:
Department of Mathematics, Purdue University, W. Lafayette, Indiana 47907

Email:
huneke@math.purdue.edu

DOI:
https://doi.org/10.1090/S0002-9939-96-03058-4

Keywords:
Briancon-Skoda theorems,
integral closure,
tight closure

Received by editor(s):
June 21, 1994

Received by editor(s) in revised form:
September 7, 1994

Additional Notes:
Both authors were partially supported by the National Science Foundation.

Communicated by:
Wolmer V. Vasconcelos

Article copyright:
© Copyright 1996
American Mathematical Society