Affine and projective lines over onedimensional semilocal domains
Author:
Chandni Shah
Journal:
Proc. Amer. Math. Soc. 124 (1996), 697705
MSC (1991):
Primary 13A17, 13B25, 13E05, 13H99, 13J15
MathSciNet review:
1301048
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We characterize those partially ordered sets that can occur as the spectra of polynomial rings over onedimensional semilocal (Noetherian) domains. We also determine the posets that can occur as projective lines over onedimensional semilocal domains.
 [HLW]
W. Heinzer, D. Lantz, and S. Wiegand, Projective lines over onedimensional semilocal domains and spectra of birational extensions, Proceedings of Conference on Algebraic Geometry and Its Applications, Springer, New York, 1994, pp. (309325). CMP 94:11
 [HW]
William
Heinzer and Sylvia
Wiegand, Prime ideals in twodimensional
polynomial rings, Proc. Amer. Math. Soc.
107 (1989), no. 3,
577–586. MR
982402 (90b:13010), http://dx.doi.org/10.1090/S00029939198909824023
 [HM]
Raymond
C. Heitmann and Stephen
McAdam, Comaximizable primes, Proc. Amer. Math. Soc. 112 (1991), no. 3, 661–669. MR 1049136
(91j:13005), http://dx.doi.org/10.1090/S0002993919911049136X
 [K]
Irving
Kaplansky, Commutative rings, Revised edition, The University
of Chicago Press, Chicago, Ill.London, 1974. MR 0345945
(49 #10674)
 [Ku]
Ernst
Kunz, Introduction to commutative algebra and algebraic
geometry, Birkhäuser Boston, Inc., Boston, MA, 1985. Translated
from the German by Michael Ackerman; With a preface by David Mumford. MR 789602
(86e:14001)
 [Ma]
Hideyuki
Matsumura, Commutative ring theory, Cambridge Studies in
Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge,
1986. Translated from the Japanese by M. Reid. MR 879273
(88h:13001)
 [M1]
Stephen
McAdam, Intersections of height 2 primes, J. Algebra
49 (1977), no. 2, 315–321. MR 0480481
(58 #644)
 [M2]
Stephen
McAdam, Uppers in 𝑅[𝑋], Comm. Algebra
22 (1994), no. 2, 499–528. MR 1255879
(94j:13007), http://dx.doi.org/10.1080/00927879408824861
 [MS]
S. McAdam and C. Shah, Substructures of Spec , J. Algebra (to appear).
 [N]
Masayoshi
Nagata, Local rings, Interscience Tracts in Pure and Applied
Mathematics, No. 13, Interscience Publishers a division of John Wiley &
Sons New YorkLondon, 1962. MR 0155856
(27 #5790)
 [S]
C. Shah, Prime ideals lying over zero in polynomial rings, J. Algebra 175 (1995), 188198.
 [W]
Roger
Wiegand, The prime spectrum of a twodimensional affine
domain, J. Pure Appl. Algebra 40 (1986), no. 2,
209–214. MR
830322 (87d:14002), http://dx.doi.org/10.1016/00224049(86)900411
 [HLW]
 W. Heinzer, D. Lantz, and S. Wiegand, Projective lines over onedimensional semilocal domains and spectra of birational extensions, Proceedings of Conference on Algebraic Geometry and Its Applications, Springer, New York, 1994, pp. (309325). CMP 94:11
 [HW]
 W. Heinzer and S. Wiegand, Prime ideals in twodimensional polynomial rings, Proc. Amer. Math. Soc. 107 (1989), 577586. MR 90b:13010
 [HM]
 R. Heitmann and S. McAdam, Comaximizable primes, Proc. Amer. Math. Soc. 112 (1989), 661669. MR 91j:13005
 [K]
 I. Kaplansky, Commutative rings, The University of Chicago Press, Chicago, IL, 1974. MR 49:10674
 [Ku]
 E. Kunz, Introduction to commutative algebra and algebraic geometry, Birkhäuser, Boston, MA, 1985. MR 86e:14001
 [Ma]
 H. Matsumura, Commutative ring theory, Cambridge University Press, Cambridge, 1986. MR 88h:13001
 [M1]
 S. McAdam, Intersections of height two primes, J. Algebra 49 (1977), 315321. MR 58:644
 [M2]
 , Uppers in , Comm. Algebra 22 (1994), 13491362. MR 94j:13007
 [MS]
 S. McAdam and C. Shah, Substructures of Spec , J. Algebra (to appear).
 [N]
 M. Nagata, Local Rings, Interscience, New York, 1962. MR 27:5790
 [S]
 C. Shah, Prime ideals lying over zero in polynomial rings, J. Algebra 175 (1995), 188198.
 [W]
 R. Wiegand, The Prime spectrum of a twodimensional affine domain, J. Pure Appl. Algebra 40 (1986), 209214. MR 87d:14002
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (1991):
13A17,
13B25,
13E05,
13H99,
13J15
Retrieve articles in all journals
with MSC (1991):
13A17,
13B25,
13E05,
13H99,
13J15
Additional Information
Chandni Shah
Affiliation:
Department of Mathematics, University of Southern California, Los Angeles, California 900891113
Address at time of publication:
Department of Mathematics, University of California, Riverside, California 92521
Email:
cshah@ucrmath.ucr.edu
DOI:
http://dx.doi.org/10.1090/S0002993996031590
PII:
S 00029939(96)031590
Keywords:
Prime spectrum,
Henselian ring,
polynomial ring,
projective line,
discrete valuation domain
Received by editor(s):
August 30, 1994
Communicated by:
Wolmer V. Vasconcelos
Article copyright:
© Copyright 1996
American Mathematical Society
