Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



The largeness of sets of points
with non-dense orbit in basic sets on surfaces

Author: Yong Moo Chung
Journal: Proc. Amer. Math. Soc. 124 (1996), 1615-1624
MSC (1991): Primary 58F15
MathSciNet review: 1307504
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that if $f$ is a diffeomorphism of a closed surface and $\varLambda $ is a basic set for $f$, then $HD(\{x\in \varLambda :the \enspace orbit \enspace of \enspace x \enspace by \enspace f \enspace is \enspace not \enspace dense \enspace in \enspace \varLambda \} )=HD(\varLambda )$.

References [Enhancements On Off] (What's this?)

  • 1. N. Aoki, Topological Dynamics, Topics in General Topology, North-Holland (1989), 625--740. MR 91m:58120
  • 2. R.Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Springer Lect.Notes. 470 (1975). MR 56:1364
  • 3. M.Brin and A.Katok, On local entropy, in "Geometric Dynamics", Springer.Lect.Notes. 1007 (1983), 30--38. MR 85c:58063
  • 4. R.Mañé, The Hausdorff dimension of horseshoes of diffeomorphisms of surfaces, Bol. Soc. Bras. Math. 20. 2 (1990), 1--24. MR 92k:58200
  • 5. H.McCluskey and A.Manning, Hausdorff dimension for horseshoes, Ergod. Th. and Dynam. Sys. 3 (1983), 251--260. MR 85j:58127
  • 6. M.Urbanski, The Hausdorff dimension of the set of points with non-dense orbit under a hyperbolic dynamical system, Nonlinearity 4 (1991), 385--397. MR 92k:58204
  • 7. P.Walters, A variational principle for the pressure of continuous transformations, Amer. J. Math. 97 (1976), 937--971. MR 52:11006
  • 8. L.S.Young, Dimension, entropy and Lyapunov exponents, Ergod. Th. and Dynam. Sys. 2 (1982), 109--124. MR 84h:58087

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 58F15

Retrieve articles in all journals with MSC (1991): 58F15

Additional Information

Yong Moo Chung
Affiliation: Department of Mathematics, Tokyo Metropolitan University, Minami-Ohsawa 1-1, Hachioji-shi, Tokyo, 192-03 Japan

Received by editor(s): August 8, 1994
Received by editor(s) in revised form: November 3, 1994
Communicated by: Mary Rees
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society