Minimal prime ideals in enveloping algebras of Lie superalgebras
Authors:
Ellen Kirkman and James Kuzmanovich
Journal:
Proc. Amer. Math. Soc. 124 (1996), 16931702
MSC (1991):
Primary 16S30; Secondary 16D30, 17B35, 17A70
MathSciNet review:
1307538
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be a finite dimensional Lie superalgebra over a field of characteristic zero. Let be the enveloping algebra of . We show that when , then is not semiprime, but it has a unique minimal prime ideal; it follows then that when is classically simple, has a unique minimal prime ideal. We further show that when is a finite dimensional nilpotent Lie superalgebra, then has a unique minimal prime ideal.
 [AF]
Frank
W. Anderson and Kent
R. Fuller, Rings and categories of modules, 2nd ed., Graduate
Texts in Mathematics, vol. 13, SpringerVerlag, New York, 1992. MR 1245487
(94i:16001)
 [B]
Erazm
J. Behr, Enveloping algebras of Lie superalgebras, Pacific J.
Math. 130 (1987), no. 1, 9–25. MR 910651
(89b:17023)
 [Be]
Allen
D. Bell, A criterion for primeness of enveloping algebras of Lie
superalgebras, J. Pure Appl. Algebra 69 (1990),
no. 2, 111–120. MR 1086554
(92b:17014), http://dx.doi.org/10.1016/00224049(90)90036H
 [BM]
Allen
D. Bell and Ian
M. Musson, Primitive factors of enveloping algebras of nilpotent
Lie superalgebras, J. London Math. Soc. (2) 42
(1990), no. 3, 401–408. MR 1087216
(92b:17013), http://dx.doi.org/10.1112/jlms/s242.3.401
 [CH]
A.
W. Chatters and C.
R. Hajarnavis, Rings with chain conditions, Research Notes in
Mathematics, vol. 44, Pitman (Advanced Publishing Program), Boston,
Mass., 1980. MR
590045 (82k:16020)
 [K]
V.
G. Kac, Lie superalgebras, Advances in Math.
26 (1977), no. 1, 8–96. MR 0486011
(58 #5803)
 [KKS]
E.
Kirkman, J.
Kuzmanovich, and L.
Small, Finitistic dimensions of Noetherian rings, J. Algebra
147 (1992), no. 2, 350–364. MR 1161298
(93h:16008), http://dx.doi.org/10.1016/00218693(92)90210D
 [Le]
Edward
S. Letzter, Prime and primitive ideals in enveloping algebras of
solvable Lie superalgebras, Abelian groups and noncommutative rings,
Contemp. Math., vol. 130, Amer. Math. Soc., Providence, RI, 1992,
pp. 237–255. MR 1176123
(93i:17003), http://dx.doi.org/10.1090/conm/130/1176123
 [LM]
E. Letzter and I. Musson, `Complete sets of representations of classical Lie superalgebras', Lett. Math. Phys. 31 (1994), 247253. CMP 94:14
 [L]
Thierry
Levasseur, Some properties of noncommutative regular graded
rings, Glasgow Math. J. 34 (1992), no. 3,
277–300. MR 1181768
(93k:16045), http://dx.doi.org/10.1017/S0017089500008843
 [MR]
J.
C. McConnell and J.
C. Robson, Noncommutative Noetherian rings, Pure and Applied
Mathematics (New York), John Wiley & Sons Ltd., Chichester, 1987. With
the cooperation of L. W. Small; A WileyInterscience Publication. MR 934572
(89j:16023)
 [S]
Manfred
Scheunert, The theory of Lie superalgebras, Lecture Notes in
Mathematics, vol. 716, Springer, Berlin, 1979. An introduction. MR 537441
(80i:17005)
 [SZ]
J. T. Stafford and J. J. Zhang, `Homological properties of (graded) Noetherian PI rings', preprint. CMP 95:01
 [W]
M. C. Wilson, `Primeness of the enveloping algebra of a Cartan type Lie superalgebra', preprint. CMP 95:03
 [AF]
 F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Second Edition. SpringerVerlag, New York, 1992. MR 94i:16001
 [B]
 E. J. Behr, `Enveloping algebras of Lie superalgebras', Pacific J. Math. 130 (1987), 925. MR 89b:17023
 [Be]
 A. D. Bell, `A criterion for primeness of enveloping algebras of Lie superalgebras', J. Pure Appl. Algebra 69 (1990), 111120. MR 92b:17014
 [BM]
 A. D. Bell and I. M. Musson, `Primitive factors of enveloping algebras of nilpotent Lie superalgebras', J. London Math. Soc. (2) 42 (1990), 401408. MR 92b:17013
 [CH]
 A. W. Chatters and C. R. Hajarnavis, Rings with Chain Conditions. Pitman, Boston, 1980. MR 82k:16020
 [K]
 V. Kac, `Lie superalgebras', Adv. Math. 26 (1977), 896. MR 58:5803
 [KKS]
 E. Kirkman, J. Kuzmanovich, and L. Small, `Finitistic dimensions of Noetherian rings', J. Algebra 147 (1992), 350364. MR 93h:16008
 [Le]
 E. Letzter, `Prime and primitive ideals in enveloping algebras of solvable Lie superalgebras', in Abelian Groups and Noncommutative Rings: A Collection of Papers in Memory of Robert B. Warfield, Jr. Contemporary Mathematics 130, American Mathematical Society, Providence, 1992. MR 93i:17003
 [LM]
 E. Letzter and I. Musson, `Complete sets of representations of classical Lie superalgebras', Lett. Math. Phys. 31 (1994), 247253. CMP 94:14
 [L]
 T. Levasseur, `Some properties of noncommutative regular graded rings', Glasgow Math. J. 34 (1992), 277300. MR 93k:16045
 [MR]
 J.C. McConnell and J.C. Robson, Noncommutative Noetherian Rings. Wiley Series in Pure and Appl. Math., New York, 1987. MR 89j:16023
 [S]
 M. Scheunert, The Theory of Lie Superalgebras. Lecture Notes in Math. 716, SpringerVerlag, Berlin, 1979. MR 80i:17005
 [SZ]
 J. T. Stafford and J. J. Zhang, `Homological properties of (graded) Noetherian PI rings', preprint. CMP 95:01
 [W]
 M. C. Wilson, `Primeness of the enveloping algebra of a Cartan type Lie superalgebra', preprint. CMP 95:03
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (1991):
16S30,
16D30,
17B35,
17A70
Retrieve articles in all journals
with MSC (1991):
16S30,
16D30,
17B35,
17A70
Additional Information
Ellen Kirkman
Affiliation:
Department of Mathematics Wake Forest University WinstonSalem, North Carolina 27109
Email:
kirkman@mthcsc.wfu.edu
James Kuzmanovich
Affiliation:
Department of Mathematics Wake Forest University WinstonSalem, North Carolina 27109
Email:
kuz@mthcsc.wfu.edu
DOI:
http://dx.doi.org/10.1090/S0002993996032303
PII:
S 00029939(96)032303
Keywords:
Enveloping algebra,
Lie superalgebra,
minimal prime ideals
Received by editor(s):
August 12, 1994
Received by editor(s) in revised form:
December 13, 1994
Additional Notes:
The first author was supported in part by a grant from the National Security Agency.
Communicated by:
Ken Goodearl
Article copyright:
© Copyright 1996 American Mathematical Society
