Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Continuous singular measures
with absolutely continuous convolution squares


Authors: Anthony H. Dooley and Sanjiv Kumar Gupta
Journal: Proc. Amer. Math. Soc. 124 (1996), 3115-3122
MSC (1991): Primary 43A77
DOI: https://doi.org/10.1090/S0002-9939-96-03391-6
MathSciNet review: 1328346
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove for every non-abelian compact connected group $G$ there is a continuous, singular, central measure $\mu $ with $\mu *\mu $ in $L^{p}$ for all $p,\ 1 \leq p < \infty $. We also construct such measures on some families of non-abelian compact totally disconnected groups. These results settle an open question of Ragozin.


References [Enhancements On Off] (What's this?)

  • 1. Jean-Louis Clerc, Orbites dans le plan tangent d’un espace symétrique, mesures orbitales et leurs transformées de Fourier, Topics in modern harmonic analysis, Vol. I, II (Turin/Milan, 1982) Ist. Naz. Alta Mat. Francesco Severi, Rome, 1983, pp. 259–299 (French). MR 748866
  • 2. A. Kh. Duli and N. Dzh. Vildberger, Harmonic analysis and global exponential mapping for compact Lie groups, Funktsional. Anal. i Prilozhen. 27 (1993), no. 1, 25–32 (Russian); English transl., Funct. Anal. Appl. 27 (1993), no. 1, 21–27. MR 1225907, https://doi.org/10.1007/BF01768664
  • 3. Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations, Die Grundlehren der mathematischen Wissenschaften, Bd. 115, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. MR 0156915
  • 4. Bernard Lacaze, Échantillonnage double et détection d’un signal à spectre fini, C. R. Acad. Sci. Paris Sér. A-B 271 (1970), A1265–A1267 (French). MR 0272497
  • 5. Edwin Hewitt and Karl Stromberg, Real and abstract analysis, Springer-Verlag, New York-Heidelberg, 1975. A modern treatment of the theory of functions of a real variable; Third printing; Graduate Texts in Mathematics, No. 25. MR 0367121
  • 6. Edwin Hewitt and Herbert S. Zuckerman, Singular measures with absolutely continuous convolution squares, Proc. Cambridge Philos. Soc. 62 (1966), 399–420. MR 0193435
    E. Seneta, Quasi-stationary behaviour in the random walk with continuous time, Austral. J. Statist. 8 (1966), 92–98. MR 0208688
  • 7. C. Karanikas and S. Koumandos, Continuous singular measures with absolutely continuous convolution squares on locally compact groups, Illinois J. Math. 35 (1991), no. 3, 490–495. MR 1103680
  • 8. G.W. Mackey, Induced representations of locally compact groups I, Ann. of Math. 55 (1952), 101--139. MR 13:434
  • 9. John F. Price, Lie groups and compact groups, Cambridge University Press, Cambridge-New York-Melbourne, 1977. London Mathematical Society Lecture Note Series, No. 25. MR 0450449
  • 10. David L. Ragozin, Central measures on compact simple Lie groups, J. Functional Analysis 10 (1972), 212–229. MR 0340965
  • 11. S. Alinhac, Paramétrix et propagation des singularités pour un problème de Cauchy à multiplicité variable, Journées: Équations aux Dérivées Partielles de Rennes (1975), Soc. Math. France, Paris, 1976, pp. 3–26. Astérisque, No. 34-35 (French). MR 0487051
  • 12. Sadahiro Saeki, On convolution squares of singular measures, Illinois J. Math. 24 (1980), no. 2, 225–232. MR 575063
  • 13. A.C. Schaeffer, The Fourier-Stieltjes coefficients of a function of bounded variation, Amer. J. Math. 61 (1939), 934--940. MR 1:12
  • 14. Krzysztof Stempak, On convolution products of radial measures on the Heisenberg group, Colloq. Math. 50 (1985), no. 1, 125–128. MR 818094

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 43A77

Retrieve articles in all journals with MSC (1991): 43A77


Additional Information

Anthony H. Dooley
Affiliation: School of Mathematics, University of New South Wales, New South Wales 2052, Australia
Email: tony@solution.maths.unsw.edu.au

Sanjiv Kumar Gupta
Affiliation: School of Mathematics, University of New South Wales, New South Wales 2052, Australia
Address at time of publication: Department of Mathematics, University of South Pacific, Suva, Fiji Islands
Email: sanjiv@solution.maths.unsw.edu.au

DOI: https://doi.org/10.1090/S0002-9939-96-03391-6
Received by editor(s): September 4, 1994
Received by editor(s) in revised form: April 3, 1995
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 1996 American Mathematical Society