Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Continuous singular measures
with absolutely continuous convolution squares


Authors: Anthony H. Dooley and Sanjiv Kumar Gupta
Journal: Proc. Amer. Math. Soc. 124 (1996), 3115-3122
MSC (1991): Primary 43A77
DOI: https://doi.org/10.1090/S0002-9939-96-03391-6
MathSciNet review: 1328346
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove for every non-abelian compact connected group $G$ there is a continuous, singular, central measure $\mu $ with $\mu *\mu $ in $L^{p}$ for all $p,\ 1 \leq p < \infty $. We also construct such measures on some families of non-abelian compact totally disconnected groups. These results settle an open question of Ragozin.


References [Enhancements On Off] (What's this?)

  • 1. J.L. Clerc, Orbites dans le plan tangent d'un espace symétrique, mesures orbitales et leurs transformées de Fourier, Topics in Modern Harmonic Analysis,Vol.I,, Proc. of a seminar held in Torino and Milano, May-June 1982, pp. 259--300. MR 86c:22013
  • 2. A.H. Dooley and N.J. Wildberger, Global formulae on compact Lie groups, Funktsional. Anal. i Prilozhen. 27 (1) (1993), 25--32; English transl. , Functional Anal. Appl. 27 (1993), 21--27. MR 94e:22032
  • 3. E. Hewitt and K. Ross, Abstract Harmonic Analysis, Vol.I, Springer-Verlag, Berlin, 1963. MR 28:158
  • 4. E. Hewitt and K. Ross, Abstract Harmonic Analysis, Vol.II, Springer-Verlag, Berlin, 1970. MR 42:7378
  • 5. E. Hewitt and K. Stromberg, Real and Abstract Analysis, 3rd printing, Springer-Verlag, Berlin, 1975. MR 51:3363
  • 6. E. Hewitt and H. Zuckerman, Singular measures with absolutely continuous convolution squares, Proc. Cambridge Phil. Soc. 62 (1966), 399--420; , vol. 63, 1967, pp. 367--368. MR 33:1655; MR 34:8497
  • 7. C. Karanikas and S. Koumandos, Continuous singular measures with absolutely continuous convolution squares and locally compact groups, Illinois J. of Math. 35 (3) (1991), 490--495. MR 92b:43004
  • 8. G.W. Mackey, Induced representations of locally compact groups I, Ann. of Math. 55 (1952), 101--139. MR 13:434
  • 9. J.F. Price, Lie groups and compact groups, Cambridge University Press, Cambridge, 1977. MR 56:8743
  • 10. D.L. Ragozin, Central measures on compact simple Lie groups, J. of Functional Analysis 10 (1972), 212--229. MR 49:5715
  • 11. S. Saeki, Singular measures having absolutely continuous convolution powers, Illinois J. Math. 21 (1977), 395--412. MR 58:6719
  • 12. S. Saeki, On convolution squares of singular measures, Illinois J. Math. 24 (1980), 225--232. MR 81i:42005
  • 13. A.C. Schaeffer, The Fourier-Stieltjes coefficients of a function of bounded variation, Amer. J. Math. 61 (1939), 934--940. MR 1:12
  • 14. K. Stempak, On convolution products of radial measures on the Heisenberg group, Colloq. Math. 50 (1985), 125--128. MR 87d:22014

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 43A77

Retrieve articles in all journals with MSC (1991): 43A77


Additional Information

Anthony H. Dooley
Affiliation: School of Mathematics, University of New South Wales, New South Wales 2052, Australia
Email: tony@solution.maths.unsw.edu.au

Sanjiv Kumar Gupta
Affiliation: School of Mathematics, University of New South Wales, New South Wales 2052, Australia
Address at time of publication: Department of Mathematics, University of South Pacific, Suva, Fiji Islands
Email: sanjiv@solution.maths.unsw.edu.au

DOI: https://doi.org/10.1090/S0002-9939-96-03391-6
Received by editor(s): September 4, 1994
Received by editor(s) in revised form: April 3, 1995
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society