Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Commutativity of automorphisms
of subfactors modulo inner automorphisms


Author: Satoshi Goto
Journal: Proc. Amer. Math. Soc. 124 (1996), 3391-3398
MSC (1991): Primary 46L37
DOI: https://doi.org/10.1090/S0002-9939-96-03443-0
MathSciNet review: 1340387
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce a new algebraic invariant $\chi _{a}(M,N)$ of a subfactor $N \subset M$. We show that this is an abelian group and that if the subfactor is strongly amenable, then the group coincides with the relative Connes invariant $\chi (M,N)$ introduced by Y. Kawahigashi. We also show that this group is contained in the center of $ {\hbox {Out}}(M,N)$ in many interesting examples such as quantum $SU(n)_{k}$ subfactors with level $k$ $(k \geq n+1)$, but not always contained in the center. We also discuss its relation to the most general setting of the orbifold construction for subfactors.


References [Enhancements On Off] (What's this?)

  • [CK] M. Choda & H. Kosaki, Strongly outer actions for an inclusion of factors, J. Funct. Anal. 122 (1994), 315--332. MR 96b:46085
  • [C1] A. Connes, Sur le theoreme de Radon-Nikodym pour les poids normauxfideles semi-finis, Bull. Sci. Math. 97 (1973), 253--258. MR 50:10841
  • [C2] A. Connes, Outer conjugacy classes of automorphisms of factors, Ann. Sci. Ec. Norm. Sup. 4me serie, t.8 (1975), 383--420. MR 52:15031
  • [EK1] D. E. Evans & Y. Kawahigashi, Orbifold subfactors from Hecke algebras, Comm. Math. Phys. 165 (1994), 445--484. CMP 95:03
  • [EK2] D. E. Evans & Y. Kawahigashi, Subfactors and conformal field theory, Quantum and non-commutative analysis, Kluwer Academic, 1993, pp. 341--369. MR 95j:46074
  • [G1] S. Goto, Orbifold construction for non-AFD subfactors, Int. J. of Math 5 (1994), 725--746. MR 95h:46094
  • [G2] S. Goto, Symmetric flat connections triviality of Loi's invariant and orbifold subfactors, to appear in Publ. RIMS Kyoto Univ.
  • [I] M. Izumi, Application of fusion rules to classification of subfactors, Publ. RIMS Kyoto Univ 27 (1991), 953--994. MR 93b:46121
  • [Ka1] Y. Kawahigashi, Automorphism commuting with a conditional expectation onto a subfactor with finite index, J. Operator theory 28 (1992), 127--145. MR 95b:46086
  • [Ka2] Y. Kawahigashi, On flatness of Ocneanu's connections on the Dynkin diagramsand classification of subfactors, J. Funct. Anal. 127 (1995), 63--107. MR 95j:46075
  • [Ka3] Y. Kawahigashi, Centrally trivial automorphisms and an analogue of Connes's $\chi (M)$ for subfactors, Duke Math. J. 71 (1993), 93--118. MR 94k:46131
  • [Ko] H. Kosaki, Automorphisms in the irreducible decompositions of sectors, ``Quantum and non-commutative analysis", Kluwer Academic, 1993, pp. 305--316. MR 95e:46073
  • [L] P. H. Loi, On automorphisms of subfactors, preprint, 1990.
  • [O1] A. Ocneanu, Quantized group string algebras and Galois theory for algebras, ``Operator algebras and applications, Vol. 2 (Warwick, 1987)'', London Math. Soc. Lect. Note Series Vol. 136, Cambridge University Press, 1988, pp. 119--172. MR 91k:46068
  • [P1] S. Popa, On the classification of actions of amenable groups on subfactors, C. R. Acad. Sc. Paris. 315 (1992), 295--299. MR 93i:46110
  • [P2] S. Popa, Classification of actions of discrete amenable groups on amenable subfactors of type II, preprint, 1992.
  • [P3] S. Popa, Classification of amenable subfactors of type II Acta Math., vol. 172, 1994, pp. 352--445. MR 95f:46105
  • [W] H. Wenzl, Hecke algebras of type $A_{n} $ and subfactors, Invent. Math. 92 (1988), 345--383. MR 90b:46118
  • [X1] F. Xu, Orbifold construction in subfactors, Comm. Math. Phys. 166 (1994), 237--254. CMP 95:06
  • [X2] F. Xu, The flat part of non-flat orbifolds, 1993, to appear in Pac. J. of Math.
  • [Y1] S. Yamagami, A note on Ocneanu's approach to Jones' index theory, Internat. J. of Math. 4 (1993), 859--871. MR 95f:46114
  • [Y2] S. Yamagami, Modular theory for bimodules, J. Funct. Anal. 125 (1994), 327--357. CMP 95:02

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 46L37

Retrieve articles in all journals with MSC (1991): 46L37


Additional Information

Satoshi Goto
Affiliation: Department of Mathematics, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102, Japan
Email: s-goto@hoffman.cc.sophia.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-96-03443-0
Keywords: Approximately inner automorphism, centrally trivial automorphism, Loi's invariant, non-strongly outer automorphism, orbifold construction, quantum $SU(n)_{k}$ subfactor, relative Connes invariant
Received by editor(s): March 9, 1995
Received by editor(s) in revised form: May 8, 1995
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society