Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Classifying spaces and homotopy
sets of axes of pairings


Author: Kenshi Ishiguro
Journal: Proc. Amer. Math. Soc. 124 (1996), 3897-3903
MSC (1991): Primary 55R35; Secondary 55P15, 55P60
DOI: https://doi.org/10.1090/S0002-9939-96-03497-1
MathSciNet review: 1343701
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the maps between classifying spaces of the form $BK \times BL \rightarrow BG$. The main theorem shows that if the restriction map on $BL$ is a weak epimorphism, then the restriction on $BK$ should factor through the classifying spaces of the center of the compact Lie group $G$. An application implies that $BG$ is an H-space (Hopf space) if and only if $G$ is abelian.


References [Enhancements On Off] (What's this?)

  • 1. J. Aguadé and L. Smith, On the mod p torus theorem of John Hubbuck, Math. Z. 191 (1986), 325-326. MR 87e:57044
  • 2. G. Dula and D. Gottlieb, Splitting off H-spaces and Conner-Raymond Splitting Theorem, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 37 (1990), 321-334. MR 91i:55018
  • 3. W.G. Dwyer and G. Mislin, On the homotopy type of the components of $map_{*}(BS^{3}, BS^{3})$, Proc. 1986 Barcelona conference, LNM 1298 (1987), 82-89. MR 89e:55018
  • 4. W.G. Dwyer and C. Wilkerson, The center of a $p$-compact group, Preprint.
  • 5. W.G. Dwyer and A. Zabrodsky, Maps between classifying spaces, Proc. 1986 Barcelona conference, LNM 1298 (1987), 106-119. MR 89b:55018
  • 6. Y. Hemmi, The projective plane of an $H$-pairing, J.P.A.A. 75 (1991), 277-296. MR 92m:55011
  • 7. K. Ishiguro, A $p$-local splitting of $BU(n)$, Proc. of AMS 95(2) (1985), 307-311. MR 86m:55023
  • 8. K. Ishiguro and D. Notbohm, Fibrations of classifying spaces, Transaction of AMS 343(1) (1994), 391-415. MR 94h:55028
  • 9. S. Jackowski, J.E. McClure and B. Oliver, Homotopy classification of self-maps of $BG$ via $G$-actions Part I and Part II, Ann. of Math. 135 (1992), 183-226, 227-270. MR 93e:55019
  • 10. S. Jackowski, J.E. McClure and B. Oliver, Self homotopy equivalences of classifying spaces of compact connected Lie groups, Preprint.
  • 11. R. Lashof, P. May and G. Segal, Equivariant bundles with abelian structural group, Contemporary Math. 19 (1983), 167-176. MR 85b:55023
  • 12. J. Lin, A cohomological proof of the torus theorem, Math. Z. 190 (1985), 469-476. MR 87c:55009
  • 13. G. Mislin and J. Thévenaz, The $Z^{*}$-Theorem for compact Lie groups, Math. Ann. 291 (1991), 103-111. MR 92i:22006
  • 14. D. Notbohm, Maps between classifying spaces, Math. Z. 207 (1991), 153-168. MR 92b:55017
  • 15. D. Notbohm, Maps between classifying spaces and apllications,, J.P.A.A. 89 (1993), 273-294. MR 95c:55019
  • 16. N. Oda, The homotopy set of the axes of pairings, Canad. J. Math. 42 (1990), 856-868. MR 91i:55019
  • 17. N. Oda, Localization of the homotopy set of the axes of pairings, Adams memorial symposium on algegraic topology volume 1, London Math. Soc. Lecture Notes 175, Cambridge Univ. Press (1992), 163-177. MR 93i:55014

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 55R35, 55P15, 55P60

Retrieve articles in all journals with MSC (1991): 55R35, 55P15, 55P60


Additional Information

Kenshi Ishiguro
Affiliation: Department of Mathematics, Fukuoka University, Fukuoka 814-80, Japan

DOI: https://doi.org/10.1090/S0002-9939-96-03497-1
Keywords: Classifying space, mapping spaces, $p$-completion, Lie groups, weak epimorphism, pairing
Received by editor(s): April 10, 1995
Received by editor(s) in revised form: June 15, 1995
Dedicated: Dedicated to Professor Teiichi Kobayashi on his 60th birthday
Communicated by: Thomas Goodwillie
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society