On 2D packings of cubes in the torus

Authors:
Andrew V. Reztsov and Ian H. Sloan

Journal:
Proc. Amer. Math. Soc. **125** (1997), 17-26

MSC (1991):
Primary 05B40; Secondary 11H31, 52C15, 65D32

DOI:
https://doi.org/10.1090/S0002-9939-97-03930-0

MathSciNet review:
1401751

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The 2D packings of cubes (i.e. squares) in the torus are considered. We obtain the exact expression for the quantity , the maximal number of 2D cubes in a packing. (Here is the length of sides of cubes, .) Corresponding best packings are constructed. Both rank 1 best lattice packings and rank 2 best lattice packings are given.

**1.**I.H.Sloan and J.N.Lyness,*The representation of lattice quadrature rules as multiple sums*, Math. Comp.**52**(185) (1989), 81-94. MR**90a:65053****2.**I.H.Sloan and S.Joe,*Lattice methods for multiple integration*, Oxford University Press, 1994.**3.**S.B.Stechkin,*Some extremal properties of the trigonometric sums*, in Modern Problems in Number Theory. Summaries of International Conference, Tula, 1993, p. 153 (Russian).**4.**S.B.Stechkin,*Some extremal properties of the trigonometric sums*, Matematicheskie zametki**55**(2) (1994), 130-143 (Russian). MR**95i:11093****5.**V.A.Yudin,*Packings of balls in Euclidean space, and extremal problems for trigonometric polynomials*, Discretnaya Matematica**1**(2) (1989), 155-158 (Russian); English translation in Discrete. Math. Appl.**1**(1) (1991), 69-72. MR**91a:52023****6.**H.Niederreiter,*Quasi-Monte Carlo methods and pseudo-random numbers*, Bull. Amer. Math. Soc.**84**(1978), 975-1041. MR**80d:65016****7.**S.K.Zaremba,*Good lattice points, discrepancy and numerical integration*, Ann. Mat. Pura Appl.**73**(1966), 293-317. MR**36:1107****8.**H.Niederreiter and I.H.Sloan,*Integration of nonperiodic functions of two variables by Fibonacci lattice rules*, J. Comp. Appl. Math.**51**(1994), 57-70. MR**95f:65056****9.**N.S.Bahvalov,*Approximate computation of multiple integrals*, Vestnik Moskov. Univ. Ser. Mat. Meh. Astr. Fiz. Him. (4) (1959) (Russian). MR**22:6077****10.**N.M. Korobov,*Number-theoretic methods in approximate analysis*, Gosudarstv. Izdat. Fiz.-Mat. Lit, Moscow, 1963 (Russian). MR**28:716**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
05B40,
11H31,
52C15,
65D32

Retrieve articles in all journals with MSC (1991): 05B40, 11H31, 52C15, 65D32

Additional Information

**Andrew V. Reztsov**

Affiliation:
Research Fellow, Division of Science and Technology, Tamaki Campus, The University of Auckland, Private Bag 92019, Auckland, New Zealand

Email:
a.reztsov@auckland.ac.nz

**Ian H. Sloan**

Affiliation:
School of Mathematics, University of New South Wales, Sydney 2052, New South Wales, Australia

Email:
I.Sloan@unsw.edu.au

DOI:
https://doi.org/10.1090/S0002-9939-97-03930-0

Received by editor(s):
June 16, 1995

Communicated by:
William W. Adams

Article copyright:
© Copyright 1997
American Mathematical Society