On Carathéodory's conditions

for the initial value problem

Authors:
D. C. Biles and P. A. Binding

Journal:
Proc. Amer. Math. Soc. **125** (1997), 1371-1376

MSC (1991):
Primary 34A12; Secondary 34A40

MathSciNet review:
1403114

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove a local existence theorem of Carathéodory-Goodman type for where instead of being continuous in we require only that it have no ``downward discontinuities.''

**1.**N. Azbelev, Z. Calyuk, Uniqueness of the solution of an integral equation,*Soviet Math. Dokl*.**5**(1964) 611-614.**2.**Daniel C. Biles,*Continuous dependence of nonmonotonic discontinuous differential equations*, Trans. Amer. Math. Soc.**339**(1993), no. 2, 507–524. MR**1126212**, 10.1090/S0002-9947-1993-1126212-0**3.**Daniel C. Biles,*Existence of solutions for discontinuous differential equations*, Differential Integral Equations**8**(1995), no. 6, 1525–1532. MR**1329854****4.**Paul Binding,*The differential equation 𝑥=𝑓∘𝑥*, J. Differential Equations**31**(1979), no. 2, 183–199. MR**525443**, 10.1016/0022-0396(79)90143-8**5.**Alberto Bressan,*Directionally continuous selections and differential inclusions*, Funkcial. Ekvac.**31**(1988), no. 3, 459–470. MR**987798****6.**C. Carathéodory, Vorlesungen über reelle Funktionen, Teubner, 1918.**7.**Gerald S. Goodman,*Subfunctions and intitial-value problem for differential equations satisfying Carathéodory’s hypotheses*, J. Differential Equations**7**(1970), 232–242. MR**0255880****8.**Seppo Heikkilä, V. Lakshmikantham, and S. Leela,*Applications of monotone techniques to differential equations with discontinuous right-hand side*, Differential Integral Equations**1**(1988), no. 3, 287–297. MR**929916****9.**D. L. Hanson and Paul Waltman,*A note on a functional equation*, J. Math. Anal. Appl.**10**(1965), 330–333. MR**0173872****10.**J. S. Muldowney and D. Willett,*An intermediate value property for operators with applications to integral and differential equations*, Canad. J. Math.**26**(1974), 27–41. MR**0338522****11.**M. Nagumo, Über das Verfahren der sukzessiven Approximationen zur Integration gewöhnlicher Differentialgleichungen,*Japan. J. Math*.**7**(1930) 143-160.**12.**G. Peano, Sull'integrabilitá delle equazione differenziali di primo ordine,*Atti Acad. Torino***21**(1885/6) 677-685.**13.**W. Rzymowski, D. Walachowski, One-dimensional differential equation under weak assumptions,*J. Math. Anal. Appl*.,**198**(1996), no. 3, 657-670. CMP**96:09****14.**Alfred Tarski,*A lattice-theoretical fixpoint theorem and its applications*, Pacific J. Math.**5**(1955), 285–309. MR**0074376****15.**David V. V. Wend,*Existence and uniqueness of solutions of ordinary differential equations*, Proc. Amer. Math. Soc.**23**(1969), 27–33. MR**0245879**, 10.1090/S0002-9939-1969-0245879-4**16.**Z. Wu, The ordinary differential equations with discontinuous right members and the discontinuous solutions of the quasilinear partial differential equations,*Sci. Sinica***13**(1964) 1901-1917.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
34A12,
34A40

Retrieve articles in all journals with MSC (1991): 34A12, 34A40

Additional Information

**D. C. Biles**

Affiliation:
Department of Mathematics, Western Kentucky University, Bowling Green, Kentucky 42101

Email:
Daniel.Biles@wku.edu

**P. A. Binding**

Affiliation:
Department of Mathematics and Statistics, University of Calgary, Alberta, Canada T2N 1N4

Email:
binding@acs.ucalgary.ca

DOI:
http://dx.doi.org/10.1090/S0002-9939-97-03942-7

Received by editor(s):
November 8, 1995

Additional Notes:
The second author’s research was supported by NSERC of Canada and the I. W. Killam Foundation.

Communicated by:
Hal L. Smith

Article copyright:
© Copyright 1997
American Mathematical Society