Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Characterizations of pseudodifferential operators on the circle


Author: Severino T. Melo
Journal: Proc. Amer. Math. Soc. 125 (1997), 1407-1412
MSC (1991): Primary 47G30; Secondary 35S05, 58G15
MathSciNet review: 1415353
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Globally defined operators are shown to be equivalent to the classical pseudodifferential operators on the circle. A characterization of the smooth operators for the regular representation of $\mathbb {S}^{1} $ is also given.


References [Enhancements On Off] (What's this?)

  • 1. M. S. Agranovič, Spectral properties of elliptic pseudodifferential operators on a closed curve, Funktsional. Anal. i Prilozhen. 13 (1979), no. 4, 54–56 (Russian). MR 554412
  • 2. M. S. Agranovich, On elliptic on a closed curve, Trans. Moscow Math. Soc. 47 (1985), 23-74.
  • 3. H. O. Cordes, Elliptic pseudodifferential operators—an abstract theory, Lecture Notes in Mathematics, vol. 756, Springer, Berlin, 1979. MR 551619
  • 4. H. O. Cordes, The technique of pseudodifferential operators, London Mathematical Society Lecture Note Series, vol. 202, Cambridge University Press, Cambridge, 1995. MR 1314815
  • 5. H. O. Cordes, On pseudodifferential operators and smoothness of special Lie-group representations, Manuscripta Math. 28 (1979), no. 1-3, 51–69. MR 535694, 10.1007/BF01647964
  • 6. Bernhard Gramsch, Relative Inversion in der Störungstheorie von Operatoren und Ψ-Algebren, Math. Ann. 269 (1984), no. 1, 27–71 (German). MR 756775, 10.1007/BF01455995
  • 7. Lars Hörmander, The analysis of linear partial differential operators. III, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 274, Springer-Verlag, Berlin, 1985. Pseudodifferential operators. MR 781536
  • 8. William McLean, Local and global descriptions of periodic pseudodifferential operators, Math. Nachr. 150 (1991), 151–161. MR 1109651, 10.1002/mana.19911500112
  • 9. Kevin R. Payne, Smooth tame Fréchet algebras and Lie groups of pseudodifferential operators, Comm. Pure Appl. Math. 44 (1991), no. 3, 309–337. MR 1090435, 10.1002/cpa.3160440304
  • 10. Marc A. Rieffel, Deformation quantization for actions of 𝑅^{𝑑}, Mem. Amer. Math. Soc. 106 (1993), no. 506, x+93. MR 1184061, 10.1090/memo/0506
  • 11. J. Saranen and W. L. Wendland, The Fourier series representation of pseudodifferential operators on closed curves, Complex Variables Theory Appl. 8 (1987), no. 1-2, 55–64. MR 891751
  • 12. Elmar Schrohe, A Ψ* algebra of pseudodifferential operators on noncompact manifolds, Arch. Math. (Basel) 51 (1988), no. 1, 81–86. MR 954072, 10.1007/BF01194158

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 47G30, 35S05, 58G15

Retrieve articles in all journals with MSC (1991): 47G30, 35S05, 58G15


Additional Information

Severino T. Melo
Affiliation: Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281, São Paulo 05315-970, Brazil
Email: toscano@ime.usp.br

DOI: http://dx.doi.org/10.1090/S0002-9939-97-04016-1
Received by editor(s): November 14, 1995
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 1997 American Mathematical Society