Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The boundary of a Busemann space


Author: Philip K. Hotchkiss
Journal: Proc. Amer. Math. Soc. 125 (1997), 1903-1912
MSC (1991): Primary 20F32
DOI: https://doi.org/10.1090/S0002-9939-97-04166-X
MathSciNet review: 1425125
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $X$ be a proper Busemann space. Then there is a well defined boundary, $\partial X$, for $X$. Moreover, if $X$ is (Gromov) hyperbolic (resp. non-positively curved), then this boundary is homeomorphic to the hyperbolic (resp. non-positively curved) boundary.


References [Enhancements On Off] (What's this?)

  • [Bo] B. H. Bowditch, Minkowskian Subspaces of Non-positively Curved Subspaces, preprint.
  • [Br] M. Bridson, Geodesics and Curvature in Metric Simplicial Complexes, Group Theory from a Geometrical Viewpoint (E. Ghys, A. Haefliger, and A. Verjovsky, eds.), Proceedings of ICTP, Trieste, Italy, World Scientific, 1991, pp. 373-463. MR 94c:57040
  • [F] E. Freden, Negatively Curved Groups have the Convergence Property. I, II,Ann. Acad. Sci. Fenn. Math. 20 (1995), 333-348; 21 (1996), 133-150. MR 96g:20054; CMP 96:08
  • [GH] E. Ghys and P. de la Harpe (eds.), Sur le Groupes Hyperboliques d'après Mikhael Gromov, Progress in Mathematics 83, Birkhäuser, Boston, 1990. MR 92f:53050
  • [G1] M. Gromov, Hyperbolic Groups, Essays on Group Theory (S.M. Gersten, ed.), MSRI Publications 8, Springer-Verlag, 1987, pp. 75-263. MR 89e:20070
  • [G2] -, Asymptotic Invariants of Infinite Groups, Geometric Group Theory, Volume 2 (Graham A. Niblo and Martin Roller, eds.), London Mathematical Society Lecture Note Series 182, Cambridge University Press, 1993. MR 95m:20041
  • [M] J. Munkres, Topology: A First Course, Prentice Hall, Englewood Cliffs, 1975. MR 57:4063
  • [NS] W. Neumann and M. Shapiro, Equivalent Automatic Structures and Their Boundaries, Inter. Jour. of Algebra and Comp. 2 (1992), 443-469. MR 93j:20081
  • [P] F. Paulin, Constructions of Hyperbolic Groups via Hyperbolization of Polyhedra, Group Theory from a Geometrical Viewpoint (E. Ghys, A. Haefliger, and A. Verjovsky, eds.), Proceedings of ICTP, Trieste, Italy, World Scientific, 1991, pp. 313-372. MR 93d:57005
  • [Sw] E. Swenson, Negatively Curved Groups and Related Topics, PhD Thesis, Brigham Young University (1993).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 20F32

Retrieve articles in all journals with MSC (1991): 20F32


Additional Information

Philip K. Hotchkiss
Affiliation: Department of Mathematics, The University of St. Thomas, St. Paul, Minnesota 55015
Email: pkhotchkiss@stthomas.edu

DOI: https://doi.org/10.1090/S0002-9939-97-04166-X
Keywords: Busemann space, geodesic, proper
Received by editor(s): November 19, 1995
Communicated by: James E. West
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society