Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Rotation invariant ambiguity functions


Author: Qingtang Jiang
Journal: Proc. Amer. Math. Soc. 126 (1998), 561-567
MSC (1991): Primary 42C05, 42C99
DOI: https://doi.org/10.1090/S0002-9939-98-04197-5
MathSciNet review: 1443157
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $W(\psi; x, y)$ be the wideband ambiguity function. It is obtained in this note that $y^{-\frac {\alpha +2}2}W(\psi; x, y) (\alpha >-1)$ is $SO(2)$-invariant if and only if the Fourier transform of $\psi$ is a Laguerre function.


References [Enhancements On Off] (What's this?)

  • 1. L. Auslander and I. Gertner, Wideband ambiguity functions and the $a\cdot x+b$ group, in ``Signal Processing: Part I - Signal Processing Theory'', L. Auslander et al. eds., Springer-Verlag, New York, 1990, 1-12. MR 90j:94005
  • 2. I. Daubechies, ``Ten Lectures on Wavelets'', SIAM, Philadelphia, 1992. MR 93e:42045
  • 3. I. Daubechies, J. Klauder and T. Paul, Wiener measures for path integrals with affine kinematic variables, J. Math. Phys., 28(1987), 85-102. MR 88g:81030
  • 4. D. Gabor, Theory of communication, J. Inst. Electr. Eng., 93(1964), 429-457.
  • 5. A. Grossmann and J. Morlet, Decomposition of Hardy functions into square integrable wavelets of constant shape, SIAM. J. Math. Anal., 15 (1984), 723-736. MR 85i:81146
  • 6. C. Heil and D. Walnut, Continuous and discrete wavelet transform, SIAM. Rev., 31(1989), 628-666. MR 91c:42032
  • 7. Q. Jiang and L. Peng, Casimir operator and wavelet transform, in ``Harmonic Analysis in China'', Hongkong, Kluwer Academic Publishers, 1995. MR 96m:22016
  • 8. G. Kaiser, ``A Friendly Guide to Wavelet'', Birkhäuser, 1994.
  • 9. E. Kalnins and W. Miller, A note on group contractions and radar ambiguity functions, in ``Radar and Sonar, Part II'', F. Alberto Grünbaum et al. eds., Springer-Verlag, New York, 1992, 71-82. MR 94g:78006
  • 10. P. Maas, Wideband approximation and wavelet transform, in ``Radar and Sonar, Part II'', F. Alberto Grünbaum et al. eds., Springer-Verlag, New York, 1992, 83-88. MR 93m:00045
  • 11. W. Magnus, F. Oberhettinger and R. Soni, ``Formulas and Theorems for the Special Functions of Mathematical Physics'', Springer-Verlag Berlin, Heidelberg, 1966. MR 38:1291
  • 12. W. Miller, Topics in harmonic analysis with applications to radar and sonar, in ``Radar and Sonar, Part I'', R. Bluhat et al. eds., Springer-Verlag, New York, 1991, 66-168. MR 93m:00045
  • 13. P. Morse, Diatomic molecules according to the wave mechanics. II. Vibrational levels, Physical Review, 34(1929), 57-64.
  • 14. H. Naparst, Dense target signal processing, IEEE Trans. Inform. Theory, 37(1991), 317-327. MR 92b:94009
  • 15. W. Schempp, ``Harmonic Analysis on the Heisenberg Nilpotent Lie Group, with Applications to Signal Theory'', Longman, 1986. MR 88f:22025
  • 16. D. Swick, An ambiguity function independent of assumption about bandwidth and carrier frequency, NRL Report 6471, Washington, DC, 1966.
  • 17. D. Swick, A review of wide-band ambiguity function, NRL Report 6994, Washington, DC, 1969.
  • 18. L. Weiss, Wavelets and wideband correlation processing, IEEE Signal Proc. Magazine, Jan. 1994, 13-32.
  • 19. C. Wilcox, The synthesis problem for radar ambiguity functions, in ``Radar and Sonar, Part I'', R. Bluhat et al. eds., Springer-Verlag, New York, 1991, 229-260. MR 93m:00045
  • 20. P. Woodward, ``Probability and Information Theory with Applications to Radar'', 2nd ed, Pergamon Press, New York, 1964. MR 31:4637
  • 21. R. Young, ``Wavelet Theory and Its Applications", Kluwer Academic Publishers, Boston, 1993. MR 95j:94007

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 42C05, 42C99

Retrieve articles in all journals with MSC (1991): 42C05, 42C99


Additional Information

Qingtang Jiang
Affiliation: Department of Mathematics, Peking University, Beijing 100871, People’s Republic of China
Address at time of publication: Department of Mathematics, National University of Singapore, Lower Kent Ridge Road, Singapore 119260
Email: qjiang@haar.math.nus.sg

DOI: https://doi.org/10.1090/S0002-9939-98-04197-5
Keywords: Ambiguity function, rotation invariant, Laguerre function
Received by editor(s): October 25, 1995
Received by editor(s) in revised form: August 23, 1996
Communicated by: J. Marshall Ash
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society