Spectral properties of continuous

refinement operators

Authors:
R. Q. Jia, S. L. Lee and A. Sharma

Journal:
Proc. Amer. Math. Soc. **126** (1998), 729-737

MSC (1991):
Primary 34K99, 41A15, 41A25, 41A30, 42C05, 42C15

MathSciNet review:
1416091

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper studies the spectrum of continuous refinement operators and relates their spectral properties with the solutions of the corresponding continuous refinement equations.

**1.**Charalambos D. Aliprantis and Owen Burkinshaw,*Problems in real analysis*, Academic Press, Inc., Boston, MA, 1990. A workbook with solutions. MR**1036729****2.**Charles K. Chui and Xian Liang Shi,*Continuous two-scale equations and dyadic wavelets*, Adv. Comput. Math.**2**(1994), no. 2, 185–213. MR**1269380**, 10.1007/BF02521107**3.**Wolfgang Dahmen and Charles A. Micchelli,*Continuous refinement equations and subdivision*, Adv. Comput. Math.**1**(1993), no. 1, 1–37. MR**1230249**, 10.1007/BF02070819**4.**G. Derfel, N. Dyn, and D. Levin,*Generalized refinement equations and subdivision processes*, J. Approx. Theory**80**(1995), no. 2, 272–297. MR**1315413**, 10.1006/jath.1995.1019**5.**N. Dyn and A. Ron,*Multiresolution analysis by infinitely differentiable compactly supported functions*, Appl. Comput. Harmon. Anal.**2**(1995), no. 1, 15–20. MR**1313096**, 10.1006/acha.1995.1002**6.**T. N. T. Goodman, Charles A. Micchelli, and J. D. Ward,*Spectral radius formulas for the dilation-convolution integral operator*, Southeast Asian Bull. Math.**19**(1995), no. 1, 95–106. MR**1323419****7.**Keiko Kabaya and Masao Iri,*Sum of uniformly distributed random variables and a family of nonanalytic 𝐶^{∞}-functions*, Japan J. Appl. Math.**4**(1987), no. 1, 1–22. MR**899201**, 10.1007/BF03167752**8.**K. Kabaya and M. Iri,*On operators defining a family of nonanalytic -functions*, Japan J. Appl. Math.**5**(1988), 333-365.**9.**V. A. Rvachëv,*Compactly-supported solutions of functional-differential equations and their applications*, Uspekhi Mat. Nauk**45**(1990), no. 1(271), 77–103, 222 (Russian); English transl., Russian Math. Surveys**45**(1990), no. 1, 87–120. MR**1050928**, 10.1070/RM1990v045n01ABEH002324**10.**A. Sharma,*Some simple properties of the up-function*, Proc. Conf. at Aligarh (India) on Fourier Series, Approximation Theory and Applications (eds. Z. U. Ahmad, N. K. Govil, P. K. Jain), Wiley Eastern, New Delhi (to appear).

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
34K99,
41A15,
41A25,
41A30,
42C05,
42C15

Retrieve articles in all journals with MSC (1991): 34K99, 41A15, 41A25, 41A30, 42C05, 42C15

Additional Information

**R. Q. Jia**

Affiliation:
Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1

Email:
jia@xihu.math.ualberta.ca

**S. L. Lee**

Affiliation:
Department of Mathematics, National University of Singapore, 10 Kent Ridge Crescent, Singapore 0511

Email:
matleesl@haar.math.nus.sg

**A. Sharma**

Email:
asharma@vega.math.ualberta.ca

DOI:
https://doi.org/10.1090/S0002-9939-98-04006-4

Keywords:
Continuous refinement equations,
up function,
continuous refinement operators,
compact operators,
spectrum,
spectral radius,
eigenvalues,
dilation constant,
power iteration

Received by editor(s):
October 25, 1995

Received by editor(s) in revised form:
July 23, 1996

Communicated by:
J. Marshall Ash

Article copyright:
© Copyright 1998
American Mathematical Society