Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



The quadratic form in the
Lévy-Khinchin formula on semigroups

Author: Dragu Atanasiu
Journal: Proc. Amer. Math. Soc. 126 (1998), 1507-1514
MSC (1991): Primary 43A35; Secondary 60B15
MathSciNet review: 1443369
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we obtain the quadratic form in the Lévy-Khinchin formula on a commutative involutive semigroup, with a neutral element, as a sum of two simpler quadratic forms.

References [Enhancements On Off] (What's this?)

  • [1] C. Berg, J. P. R. Christensen and P. Ressel, Harmonic analysis on semigroups, Springer, New York, Heidelberg and Berlin, 1984. MR 86b:43001
  • [2] W. Bloom and P. Ressel, Positive definite and related functions on hypergroups, Canad. J. Math. 43 (1991), 242-254. MR 92i:43004
  • [3] H. Buchwalter, Formes quadratiques sur un semi-groupe involutif, Math. Ann. 271 (1985), 619-639. MR 86i:43008
  • [4] H. Buchwalter, Les foncitons de Lévy existent!, Math. Ann. 274 (1986), 31-34. MR 87e:43007
  • [5] P. H. Maserick, A Lévy-Khinchin formula for semigroups with involution, Math. Ann. 236 (1978), 209-216. MR 58:12209

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 43A35, 60B15

Retrieve articles in all journals with MSC (1991): 43A35, 60B15

Additional Information

Dragu Atanasiu
Affiliation: Department of Mathematics, Chalmers University of Technology and Göteborg University, S-412 96 Göteborg, Sweden

Keywords: Negative definite function, involutive semigroup, Radon measure, L\'evy-Khinchin formula, quadratic form
Received by editor(s): November 7, 1996
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society