Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The primitive $p$-Frobenius groups


Authors: P. Fleischmann, W. Lempken and Pham Huu Tiep
Journal: Proc. Amer. Math. Soc. 126 (1998), 1337-1343
MSC (1991): Primary 20B15
DOI: https://doi.org/10.1090/S0002-9939-98-04491-8
MathSciNet review: 1458871
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $p$ be a fixed prime. A finite primitive permutation group $G$ with every two-point stabilizer $G_{\alpha,\beta}$ being a $p$-group is called a primitive $p$-Frobenius group. Using our earlier results on $p$-intersection subgroups, we give a complete classification of the primitive $p$-Frobenius groups.


References [Enhancements On Off] (What's this?)

  • 1. B. Baumann, Endliche nichtauflösbare Gruppen mit einer nilpotenten maximalen Untergruppe, J. Algebra 38 $(1976)$, $119 - 135$. MR 53:13391
  • 2. P. Fleischmann, W. Lempken and P.H. Tiep, Finite $p'$-semiregular groups, J. Algebra 188 $(1997)$, $547 - 579$. CMP 97:08
  • 3. P. Fleischmann, W. Lempken and P.H. Tiep, The $p$-intersection subgroups in quasi-simple and almost simple finite groups, submitted.
  • 4. D. Gorenstein, ``Finite Groups'', Harper and Row, 1968. MR 38:229
  • 5. R. Guralnick and R. Wiegand, Galois groups and the multiplicative structure of field extensions, Trans. Amer. Math. Soc. 331 $(1992)$, $563 - 584$. MR 93c:12004
  • 6. B. Huppert, ``Endliche Gruppen'', Springer, 1967. MR 37:302
  • 7. M. Liebeck, C. Praeger and J. Saxl, On the O'Nan-Scott theorem for finite primitive permutation groups, J. Austral. Math. Soc. (A) 44 $(1988)$, $389-396$. MR 89a:20002
  • 8. L. L. Scott, Representations in characteristic $p$, Santa Cruz Conference on Finite Groups, pp. $318 - 331$, Proc. Sympos. Pure Math., vol. 37, Amer. Math. Soc., Providence, R.I., $1980$. MR 82e:20052
  • 9. H. Zassenhaus, Über endliche Fastkörper, Abhandl. Math. Sem. Hamburg. Univ. 11 $(1936)$, 187-220.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 20B15

Retrieve articles in all journals with MSC (1991): 20B15


Additional Information

P. Fleischmann
Affiliation: (P. Fleischmann and W. Lempken) Institute for Experimental Mathematics, University of Essen, Ellernstr. 29, 45326 Essen, Germany

Pham Huu Tiep
Affiliation: (Pham Huu Tiep) Department of Mathematics, Ohio State University, Columbus, Ohio 43210
Email: tiep@math.ohio-state.edu

DOI: https://doi.org/10.1090/S0002-9939-98-04491-8
Received by editor(s): June 19, 1996
Received by editor(s) in revised form: November 5, 1996
Communicated by: Ronald M. Solomon
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society