A version of Strassen's Theorem

for vector-valued measures

Authors:
A. Hirshberg and R. M. Shortt

Journal:
Proc. Amer. Math. Soc. **126** (1998), 1669-1671

MSC (1991):
Primary 28B05; Secondary 30C62, 46B42

DOI:
https://doi.org/10.1090/S0002-9939-98-04236-1

MathSciNet review:
1443832

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A formulation of Strassen's Theorem is given for measures taking values in a Banach lattice. The main result (Theorem 2) corrects earlier work of the second author.

**1.**J. Diestel and J. J. Uhl, Jr.,*Vector Measures*, Mathematical Surveys, No. 15, Amer. Math. Soc., Providence, RI, 1977. MR**56:12216****2.**R. M. Dudley,*Real Analysis and Probability*, Wadsworth & Brooks/Cole, Pacific Grove, 1989. MR**91g:60001****3.**A. Hirshberg and R. M. Shortt,*Strassen's Theorem for group-valued charges*, pre-print.**4.**J. L. Kelley, J. Namioka, et al.,*Linear Topological Spaces*, Van Nostrand, Princeton, Reprinted by Springer-Verlag, New York, 1976. MR**52:14890****5.**M. März and R. M. Shortt,*Weak convergence of vector measures*, Publicationes Math.**45**(1994), 71-92. MR**96g:28015****6.**H. H. Schaefer,*Banach Lattices and Positive Operators*, Springer-Verlag, Berlin, 1974. MR**54:11023****7.**R. M. Shortt,*Strassen's Theorem for vector measures*, Proc. Amer. Math. Soc.**122**(1994), 811-820;*Correction*, Proc. Amer. Math. Soc., this number. MR**95a:28005****8.**V. Strassen,*The existence of probability measures with given marginals*, Ann. Math. Stat.**36**(1965), 423-439. MR**31:1693****9.**B. C. Vulikh,*Introduction to the Theory of Partially Ordered Spaces*, Wolters-Noordhoff, Groningen, 1967. MR**37:121****10.**A. C. Zaanen,*Riesz Spaces II*, North-Holland, Amsterdam, 1983. MR**86b:46001**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
28B05,
30C62,
46B42

Retrieve articles in all journals with MSC (1991): 28B05, 30C62, 46B42

Additional Information

**A. Hirshberg**

Affiliation:
Department of Mathematics, Wesleyan University, Middletown, Connecticut 06459-0128

**R. M. Shortt**

Affiliation:
Department of Mathematics, Wesleyan University, Middletown, Connecticut 06459-0128

DOI:
https://doi.org/10.1090/S0002-9939-98-04236-1

Received by editor(s):
July 24, 1996

Received by editor(s) in revised form:
October 28, 1996

Communicated by:
Clifford J. Earle, Jr.

Article copyright:
© Copyright 1998
American Mathematical Society