The primality of subfactors of finite index in the interpolated free group factors
Author:
Marius B. Stefan
Journal:
Proc. Amer. Math. Soc. 126 (1998), 22992307
MSC (1991):
Primary 46L37, 46L50; Secondary 22D25
MathSciNet review:
1443410
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In this paper we prove that any IIsubfactor of finite index in the interpolated free group factor is prime for any i.e., it is not isomorphic to tensor products of IIfactors.
 [1]
Ken
Dykema, Interpolated free group factors, Pacific J. Math.
163 (1994), no. 1, 123–135. MR 1256179
(95c:46103)
 [2]
Dykema, K., Two applications of free entropy, Math. Ann. 308 (1997), 547558. CMP 97:15
 [3]
Ge, L., Applications of free entropy to finite von Neumann algebras, II, Preprint.
 [4]
Ge, L., Prime Factors, Proc. Nat. Acad. Sci. (USA) 93 (1996), 1276212763. CMP 97:03
 [5]
Uffe
Haagerup, An example of a nonnuclear 𝐶*algebra, which has
the metric approximation property, Invent. Math. 50
(1978/79), no. 3, 279–293. MR 520930
(80j:46094), http://dx.doi.org/10.1007/BF01410082
 [6]
V.
F. R. Jones, Index for subfactors, Invent. Math.
72 (1983), no. 1, 1–25. MR 696688
(84d:46097), http://dx.doi.org/10.1007/BF01389127
 [7]
Sorin
Popa, Orthogonal pairs of ∗subalgebras in finite von
Neumann algebras, J. Operator Theory 9 (1983),
no. 2, 253–268. MR 703810
(84h:46077)
 [8]
Sorin
Popa, Freeindependent sequences in type 𝐼𝐼₁
factors and related problems, Astérisque 232
(1995), 187–202. Recent advances in operator algebras
(Orléans, 1992). MR 1372533
(97b:46080)
 [9]
Florin
Rădulescu, Random matrices, amalgamated free products and
subfactors of the von Neumann algebra of a free group, of noninteger
index, Invent. Math. 115 (1994), no. 2,
347–389. MR 1258909
(95c:46102), http://dx.doi.org/10.1007/BF01231764
 [10]
Stanisław
J. Szarek, Nets of Grassmann manifold and orthogonal group,
Proceedings of research workshop on Banach space theory (Iowa City, Iowa,
1981) Univ. Iowa, Iowa City, IA, 1982, pp. 169–185. MR 724113
(85h:58021)
 [11]
Dan
Voiculescu, Circular and semicircular systems and free product
factors, Operator algebras, unitary representations, enveloping
algebras, and invariant theory (Paris, 1989) Progr. Math., vol. 92,
Birkhäuser Boston, Boston, MA, 1990, pp. 45–60. MR 1103585
(92e:46124)
 [12]
Dan
Voiculescu, The analogues of entropy and of Fisher’s
information measure in free probability theory. II, Invent. Math.
118 (1994), no. 3, 411–440. MR 1296352
(96a:46117), http://dx.doi.org/10.1007/BF01231539
 [13]
D.
Voiculescu, The analogues of entropy and of Fisher’s
information measure in free probability theory. III. The absence of Cartan
subalgebras, Geom. Funct. Anal. 6 (1996), no. 1,
172–199. MR 1371236
(96m:46119), http://dx.doi.org/10.1007/BF02246772
 [1]
 Dykema, K., Interpolated free group factors, Pac. J. Math. 163 (1994), 123135. MR 95c:46103
 [2]
 Dykema, K., Two applications of free entropy, Math. Ann. 308 (1997), 547558. CMP 97:15
 [3]
 Ge, L., Applications of free entropy to finite von Neumann algebras, II, Preprint.
 [4]
 Ge, L., Prime Factors, Proc. Nat. Acad. Sci. (USA) 93 (1996), 1276212763. CMP 97:03
 [5]
 Haagerup, U., An Example of a Non Nuclear Algebra which has the Metric Approximation Property, Invent. Math. 50 (1979), 279293. MR 80j:46094
 [6]
 Jones, V.F.R., Index for Subfactors, Invent. Math. 72 (1983), 125. MR 84d:46097
 [7]
 Popa, S., Orthogonal pairs of subalgebras in finite von Neumann algebras, J. Op. Theory 9 (1983), 253268. MR 84h:46077
 [8]
 Popa, S., Freeindependent sequences in type II factors and related problems, Astérisque 232 (1995), 187202. MR 97b:46080
 [9]
 R\u{a}dulescu, F., Random matrices, amalgamated free products and subfactors of the von Neumann algebra of a free group, of noninteger index, Invent. Math. 115 (1994), 347389. MR 95c:46102
 [10]
 Szarek, S.J., Nets of Grassmann manifolds and orthogonal group, Proceedings of Research Workshop on Banach Space Theory (BorLuhLin, ed.), The University of Iowa, June 2931 (1982), 169185. MR 85h:58021
 [11]
 Voiculescu, D., Circular and semicircular systems and free product factors. Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory, Progress in Mathematics 92 (1990), 4560. MR 92e:46124
 [12]
 Voiculescu, D., The analogues of entropy and of Fisher's information measure in free probability theory, II, Invent. Math. 118 (1994), 411440. MR 96a:46117
 [13]
 Voiculescu, D., The analogues of entropy and of Fisher's information measure in free probability theory III: the absence of Cartan subalgebras, G.A.F.A. 6, No. 1 (1996), 172199. MR 96m:46119
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (1991):
46L37,
46L50,
22D25
Retrieve articles in all journals
with MSC (1991):
46L37,
46L50,
22D25
Additional Information
Marius B. Stefan
Affiliation:
Department of Mathematics, University of Iowa, Iowa City, Iowa 52242
Email:
stefan@math.uiowa.edu
DOI:
http://dx.doi.org/10.1090/S0002993998043093
PII:
S 00029939(98)043093
Keywords:
Free entropy,
prime factors
Received by editor(s):
November 27, 1996
Received by editor(s) in revised form:
January 10, 1997
Additional Notes:
The author is a member of the Institute of Mathematics, Romanian Academy, Bucharest
Communicated by:
Palle E. T. Jorgensen
Article copyright:
© Copyright 1998
American Mathematical Society
