The primality of subfactors of finite index

in the interpolated free group factors

Author:
Marius B. Stefan

Journal:
Proc. Amer. Math. Soc. **126** (1998), 2299-2307

MSC (1991):
Primary 46L37, 46L50; Secondary 22D25

MathSciNet review:
1443410

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove that any II-subfactor of finite index in the interpolated free group factor is prime for any i.e., it is not isomorphic to tensor products of II-factors.

**[1]**Ken Dykema,*Interpolated free group factors*, Pacific J. Math.**163**(1994), no. 1, 123–135. MR**1256179****[2]**Dykema, K.,*Two applications of free entropy*, Math. Ann.**308**(1997), 547-558. CMP**97:15****[3]**Ge, L.,*Applications of free entropy to finite von Neumann algebras, II*, Preprint.**[4]**Ge, L.,*Prime Factors*, Proc. Nat. Acad. Sci. (USA)**93**(1996), 12762-12763. CMP**97:03****[5]**Uffe Haagerup,*An example of a nonnuclear 𝐶*-algebra, which has the metric approximation property*, Invent. Math.**50**(1978/79), no. 3, 279–293. MR**520930**, 10.1007/BF01410082**[6]**V. F. R. Jones,*Index for subfactors*, Invent. Math.**72**(1983), no. 1, 1–25. MR**696688**, 10.1007/BF01389127**[7]**Sorin Popa,*Orthogonal pairs of ∗-subalgebras in finite von Neumann algebras*, J. Operator Theory**9**(1983), no. 2, 253–268. MR**703810****[8]**Sorin Popa,*Free-independent sequences in type 𝐼𝐼₁ factors and related problems*, Astérisque**232**(1995), 187–202. Recent advances in operator algebras (Orléans, 1992). MR**1372533****[9]**Florin Rădulescu,*Random matrices, amalgamated free products and subfactors of the von Neumann algebra of a free group, of noninteger index*, Invent. Math.**115**(1994), no. 2, 347–389. MR**1258909**, 10.1007/BF01231764**[10]**Stanisław J. Szarek,*Nets of Grassmann manifold and orthogonal group*, Proceedings of research workshop on Banach space theory (Iowa City, Iowa, 1981) Univ. Iowa, Iowa City, IA, 1982, pp. 169–185. MR**724113****[11]**Dan Voiculescu,*Circular and semicircular systems and free product factors*, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989) Progr. Math., vol. 92, Birkhäuser Boston, Boston, MA, 1990, pp. 45–60. MR**1103585****[12]**Dan Voiculescu,*The analogues of entropy and of Fisher’s information measure in free probability theory. II*, Invent. Math.**118**(1994), no. 3, 411–440. MR**1296352**, 10.1007/BF01231539**[13]**D. Voiculescu,*The analogues of entropy and of Fisher’s information measure in free probability theory. III. The absence of Cartan subalgebras*, Geom. Funct. Anal.**6**(1996), no. 1, 172–199. MR**1371236**, 10.1007/BF02246772

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
46L37,
46L50,
22D25

Retrieve articles in all journals with MSC (1991): 46L37, 46L50, 22D25

Additional Information

**Marius B. Stefan**

Affiliation:
Department of Mathematics, University of Iowa, Iowa City, Iowa 52242

Email:
stefan@math.uiowa.edu

DOI:
http://dx.doi.org/10.1090/S0002-9939-98-04309-3

Keywords:
Free entropy,
prime factors

Received by editor(s):
November 27, 1996

Received by editor(s) in revised form:
January 10, 1997

Additional Notes:
The author is a member of the Institute of Mathematics, Romanian Academy, Bucharest

Communicated by:
Palle E. T. Jorgensen

Article copyright:
© Copyright 1998
American Mathematical Society