Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

An index theory for $\mathbb{Z}$-actions


Author: In-Sook Kim
Journal: Proc. Amer. Math. Soc. 126 (1998), 2481-2491
MSC (1991): Primary 58G10, 58F27, 34D20, 58E40; Secondary 34C35
MathSciNet review: 1459129
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper concerns an index theory for $\Bbb Z$-actions induced by a homeomorphism of a compact space. We give a definition of a genus for uniform spaces and prove that the genus for compact spaces is an index. To this end we show a ${\Bbb Z}$-version of the Borsuk-Ulam theorem and the existence of a continuous equivariant extension for these $\Bbb Z$-actions.


References [Enhancements On Off] (What's this?)

  • 1. Thomas Bartsch, Topological methods for variational problems with symmetries, Lecture Notes in Mathematics, vol. 1560, Springer-Verlag, Berlin, 1993. MR 1295238
  • 2. Vieri Benci, A geometrical index for the group 𝑆¹ and some applications to the study of periodic solutions of ordinary differential equations, Comm. Pure Appl. Math. 34 (1981), no. 4, 393–432. MR 615624, 10.1002/cpa.3160340402
  • 3. Henri Berestycki, Jean-Michel Lasry, Giovanni Mancini, and Bernhard Ruf, Existence of multiple periodic orbits on star-shaped Hamiltonian surfaces, Comm. Pure Appl. Math. 38 (1985), no. 3, 253–289. MR 784474, 10.1002/cpa.3160380302
  • 4. Glen E. Bredon, Topology and geometry, Graduate Texts in Mathematics, vol. 139, Springer-Verlag, New York, 1993. MR 1224675
  • 5. Ronald Brown, Topology, 2nd ed., Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley & Sons, Inc.], New York, 1988. A geometric account of general topology, homotopy types and the fundamental groupoid. MR 984598
  • 6. C. Corduneanu, Almost periodic functions, Chelsea, New York, 1989 MR 58:2006 (first ed.)
  • 7. Albrecht Dold, Simple proofs of some Borsuk-Ulam results, Proceedings of the Northwestern Homotopy Theory Conference (Evanston, Ill., 1982) Contemp. Math., vol. 19, Amer. Math. Soc., Providence, RI, 1983, pp. 65–69. MR 711043, 10.1090/conm/019/711043
  • 8. Edward Fadell, The relationship between Ljusternik-Schnirelman category and the concept of genus, Pacific J. Math. 89 (1980), no. 1, 33–42. MR 596913
  • 9. Edward R. Fadell and Paul H. Rabinowitz, Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Invent. Math. 45 (1978), no. 2, 139–174. MR 0478189
  • 10. A. M. Fink, Almost periodic differential equations, Lecture Notes in Mathematics, Vol. 377, Springer-Verlag, Berlin-New York, 1974. MR 0460799
  • 11. I.S. Kim, Zu einer Indextheorie für fastperiodische Aktionen, Doctoral Thesis, LMU München, 1995
  • 12. M. A. Krasnosel′skiĭ, On the estimation of the number of critical points of functionals, Uspehi Matem. Nauk (N.S.) 7 (1952), no. 2(48), 157–164 (Russian). MR 0048699
  • 13. M. A. Krasnosel’skii, Topological methods in the theory of nonlinear integral equations, Translated by A. H. Armstrong; translation edited by J. Burlak. A Pergamon Press Book, The Macmillan Co., New York, 1964. MR 0159197
  • 14. Nelson G. Markley, Transitive homeomorphisms of the circle, Math. Systems Theory 2 (1968), 247–249. MR 0236905
  • 15. Jean Mawhin and Michel Willem, Critical point theory and Hamiltonian systems, Applied Mathematical Sciences, vol. 74, Springer-Verlag, New York, 1989. MR 982267
  • 16. R. S. Palais, The classification of real division algebras, Amer. Math. Monthly 75 (1968), 366–368. MR 0228539
  • 17. Heinrich Steinlein, On the index of approximating sets of periodic points, Manuscripta Math. 89 (1996), no. 1, 15–33. MR 1368533, 10.1007/BF02567502
  • 18. J. de Vries, Elements of topological dynamics, Mathematics and its Applications, vol. 257, Kluwer Academic Publishers Group, Dordrecht, 1993. MR 1249063

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 58G10, 58F27, 34D20, 58E40, 34C35

Retrieve articles in all journals with MSC (1991): 58G10, 58F27, 34D20, 58E40, 34C35


Additional Information

In-Sook Kim
Affiliation: Department of Mathematics, Sung Kyun Kwan University, Suwon 440-746, Korea

DOI: http://dx.doi.org/10.1090/S0002-9939-98-04451-7
Keywords: Index, genus, almost periodic, Lyapunov stable, group actions
Received by editor(s): January 22, 1997
Communicated by: Jozef Dodziuk
Article copyright: © Copyright 1998 American Mathematical Society