Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The maximal normal $\,p$-subgroup of the automorphism group of an abelian $\,p$-group


Authors: Jutta Hausen and Phillip Schultz
Journal: Proc. Amer. Math. Soc. 126 (1998), 2525-2533
MSC (1991): Primary 20K10, 20F28, 20K30
DOI: https://doi.org/10.1090/S0002-9939-98-04496-7
MathSciNet review: 1458876
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $p$ be a prime number and let $\,G\,$ be an abelian $p$-group. Let $\Delta $ be the maximal normal $p$-subgroup of $\operatorname{Aut}G$ and $\zeta $ the maximal $p$-subgroup of its centre. Let $\mathbf{t}$ be the torsion radical of ${\mathcal{E}}(G)$. Then $\Delta =(1+\mathbf{t})\zeta $. The result is new for $p=2$ and 3, and the proof is new and valid for all primes $p$.


References [Enhancements On Off] (What's this?)

  • 1. R. P. Abraham, Normal $p$-subgroups of the Automorphism Group of an Abelian $p$-group, Journal of Algebra (to appear).
  • 2. H. Freedman, The automorphisms group of countable primary reduced abelian groups, Proc. London Math.soc. (3) 12 (1962), 77-99. MR 24:A3215
  • 3. L. Fuchs, Infinite Abelian Groups, Vol. 2, Academic Press, New York, 1973. MR 50:2362
  • 4. J. Hausen, Near central automorphisms of abelian torsion groups, Trans. Amer. Math. Soc. 174 (1972), 199-215. MR 46:9193
  • 5. J. Hausen, On the normal structure of automorphism groups of abelian $\,p$-groups, J. London Math. Soc. (2), 5 (1972), 409-413. MR 48:2275
  • 6. J. Hausen, How automorphism groups reveal Ulm inveriants, J. Algebra 44 (1977), 9-28. MR 56:499
  • 7. J. Hausen and J. A. Johnson, Characterization of the primary abelian groups, bounded modulo the divisible subgroup, by the radical of their endomorphism rings, Archiv d. Math. 29 (1977), 566-570. MR 57:6231
  • 8. J. Hausen, C. E. Praeger and P. Schultz, Most Abelian $p$-groups are determined by the Jacobson radical of their endomorphism rings, Math. Z. 216 (1994), 431-436. MR 95d:20094
  • 9. P. Hill, The automorphism groups of primary abelian groups, Proc. London Math. Soc. (2), 22 (1971), 24-38. MR 43:7508
  • 10. H. Leptin, Abelsche $p$-Gruppen und ihre Automorphismengruppen, Math. Z., 73 (1960), 235-253. MR 22:730
  • 11. H. Leptin, Einige Bemerkungen über die Automorphismen abelscher Gruppen, in Proc. Colloq. Abelian Groups (Tihany, 1963), Budapest, 1964, pp. 99-104. MR 29:5929
  • 12. W. Liebert, Isomorphic automorphism groups of primary Abelian groups, Abelian group theory: Proceedings of the 1985 Oberwolfach Conference, Eds. R Göbel and E A Walker, Gordon and Breach, New York, 1987, pp. 9-31. MR 90g:20085
  • 13. R. S. Pierce, Homomorphisms of primary abelian groups, in Topics in Abelian Groups (J. M. Irwin and E. A. Walker, eds.), Scott, Foresman and Co., 1963, pp. 215-310. MR 31:1299
  • 14. C. E. Praeger and P. Schultz, The Loewy length of the Jacobson radical of a bounded endomorphism ring, in Abelian Groups and Non-commutative Rings, Amer. Math. Soc., Contemporary Mathematics 130, 1992, pp. 349-360. MR 93h:16059
  • 15. D. J. S. Robinson, A Course in the Theory of Groups, Springer-Verlag, New York, 1982. MR 84k:20001
  • 16. J. P. Serre, A Course in Arithmetic, Springer-Verlag, New York, 1973. MR 49:8956
  • 17. K. Shoda, Über die Automorphismen einer endlichen abelschen Gruppe, Math. Ann. 100 (1928), 674-686.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 20K10, 20F28, 20K30

Retrieve articles in all journals with MSC (1991): 20K10, 20F28, 20K30


Additional Information

Jutta Hausen
Affiliation: Department of Mathematics, University of Houston, Houston, Texas 77204-3476
Email: hausen@uh.edu

Phillip Schultz
Affiliation: Department of Mathematics, University of Houston, Houston, Texas 77204-3476; Department of Mathematics, University of Western Australia, Nedlands 6009, Australia
Email: schultz@maths.uwa.edu.au

DOI: https://doi.org/10.1090/S0002-9939-98-04496-7
Received by editor(s): January 28, 1997
Communicated by: Ronald M. Solomon
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society