Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A volume comparison theorem
for Finsler manifolds


Author: Carlos E. Durán
Journal: Proc. Amer. Math. Soc. 126 (1998), 3079-3082
MSC (1991): Primary 53C60, 53C15
DOI: https://doi.org/10.1090/S0002-9939-98-04629-2
MathSciNet review: 1473664
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $(M^{n},F)$ be a symmetric Finsler manifold, endowed with the Busemann volume form, and let $D$ be its unit disk bundle endowed with the canonical symplectic volume form. It is shown that $Vol(D)\leq C(n)Vol(M^{n})$, where $C(n)$ is the volume of the unit disk in ${\mathbb{R}}^{n}$. Moreover, equality holds if and only if $(M^{n},F)$ is Riemannian.


References [Enhancements On Off] (What's this?)

  • 1. H. Akbar-Zadeh, Sur les espaces de Finsler a courbures sectionnelles constantes, Acad. Roy. Belg. Bull. Cl. Sci 74 (1988), 281-322. MR 91f:53069
  • 2. D. Bao, S.-S. Chern and Z. Shen, An Introduction to Riemann-Finsler Geometry, Springer-Verlag, Berlin.
  • 3. R. Bryant, Finsler structures on the $2$-sphere satisfying K=1, Contemporary Mathematics, vol. 196, 1996, pp. 27-41. MR 97e:53128
  • 4. H. Busemann, Intrinsic Area, Ann. Math. 48 (1947), 234-267. MR 8:573a
  • 5. H. Busemann, The geometry of Finsler spaces, Bull. Amer. Math. Society 56 (1950), 5-16. MR 11:400e
  • 6. H. Busemann, Geometry of Geodesics, Academic Press, New York, 1955. MR 17:779a
  • 7. E. Cartan, Sur un problème d'equivalence et la théorie des espaces métriques generalisés, Ouvres Complétes, Vol. II, Part. III, Gauthier-Villars, Paris, pp. 1131-1153.
  • 8. M. Meyer and A. Pajor, On Santaló's inequality, Geometric aspects of functional analysis, Springer Lecture Notes in Mathematics 1376, pp. 261-263. MR 90h:52012
  • 9. Z. Shen, On Finsler geometry of submanifolds, Preprint (1996).
  • 10. A.C. Thompson, Minkowski Geometry, Cambridge University Press, Cambridge, 1996. MR 97f:52001

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 53C60, 53C15

Retrieve articles in all journals with MSC (1991): 53C60, 53C15


Additional Information

Carlos E. Durán
Affiliation: IMPA, Estrada Dona Castorina 110, Jardim Botânico, Rio de Janerio RJ 22460-320, Brasil
Address at time of publication: IVIC-Matematicas, Apartado 21827, Caracas 1020-A, Venezuela
Email: cduran@impa.br, cduran@cauchy.ivic.ve

DOI: https://doi.org/10.1090/S0002-9939-98-04629-2
Keywords: Riemannian geometry, Finsler geometry
Received by editor(s): March 6, 1997
Additional Notes: Supported by CNPq, Brasil
Communicated by: Christopher B. Croke
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society