Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On the constructible numbers

Author: Carlos R. Videla
Journal: Proc. Amer. Math. Soc. 127 (1999), 851-860
MSC (1991): Primary 03C68, 11R04
MathSciNet review: 1469439
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $\Omega$ be the field of constructible numbers, i.e. the numbers constructed from a given unit length using ruler and compass. We prove $\widetilde{\mathbb Z}\cap\Omega$ is definable in $\Omega$.

References [Enhancements On Off] (What's this?)

  • 1. N. Jacobson, Basic algebra I, Freeman & Co., San Francisco, 1974. MR 50:9457
  • 2. S. Lang, Algebraic number theory, Addison-Wesley, New York, 1970. MR 44:181
  • 3. A. Macintyre and A. Wilkie, On the decidability of the real exponential field, Oxford Univ., 1993, preprint.
  • 4. J. Neukirch, Class field theory, Springer-Verlag, New York, 1986. MR 87i:11005
  • 5. J. Robinson, Definability and decision problems in arithmetic, J. Symbolic Logic 14 (1949). MR 11:151f
  • 6. R. Rumely, Undecidability and definability for the theory of global fields, Trans. Amer. Math. Soc. 262 (1980), 195-217. MR 81m:03053
  • 7. A. Tarski, A decision method for elementary algebra and geometry, Rand Corporation, California, 1948. MR 10:499f
  • 8. C. Videla, Definability of the ring of integers of pro-$p$ extensions of number fields, in preparation.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 03C68, 11R04

Retrieve articles in all journals with MSC (1991): 03C68, 11R04

Additional Information

Carlos R. Videla
Affiliation: Departamento de Matemáticas, CINVESTAV-IPN, Av. IPN No. 2508, 07000 México D.F., Mexico

Keywords: Algebraic integer, constructible number, definable
Received by editor(s): March 20, 1996
Received by editor(s) in revised form: June 25, 1997
Communicated by: Andreas R. Blass
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society