Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Integration and homogeneous functions

Author: Jean B. Lasserre
Journal: Proc. Amer. Math. Soc. 127 (1999), 813-818
MSC (1991): Primary 65D30
MathSciNet review: 1610733
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that integrating a (positively) homogeneous function $f$ on a compact domain $\Omega\subset R^n$ reduces to integrating a related function on the boundary $\partial{\Omega}$. The formula simplifies when the boundary $\partial{\Omega}$ is determined by homogeneous functions. Similar results are also presented for integration of exponentials and logarithms of homogeneous functions.

References [Enhancements On Off] (What's this?)

  • 1. Alexander I. Barvinok, Computing the volume, counting integral points, and exponential sums, Discrete Comput. Geom. 10 (1993), no. 2, 123–141. MR 1220543, 10.1007/BF02573970
  • 2. Michel Brion, Points entiers dans les polyèdres convexes, Ann. Sci. École Norm. Sup. (4) 21 (1988), no. 4, 653–663 (French). MR 982338
  • 3. J. B. Lasserre, An analytical expression and an algorithm for the volume of a convex polyhedron in 𝑅ⁿ, J. Optim. Theory Appl. 39 (1983), no. 3, 363–377. MR 703477, 10.1007/BF00934543
  • 4. J.B. Lasserre, Integration on a convex polytope, Proc. Amer. Math. Soc. 126 (1998), 2433-2441. CMP 97:15
  • 5. Gilbert Strang, Introduction to applied mathematics, Wellesley-Cambridge Press, Wellesley, MA, 1986. MR 870634
  • 6. Michael E. Taylor, Partial differential equations. I, Applied Mathematical Sciences, vol. 115, Springer-Verlag, New York, 1996. Basic theory. MR 1395148

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 65D30

Retrieve articles in all journals with MSC (1991): 65D30

Additional Information

Jean B. Lasserre
Affiliation: LAAS-CNRS, 7 Avenue du Colonel Roche, 31077 Toulouse Cédex 4, France

Keywords: Numerical integration in $R^n$, homogeneous functions
Received by editor(s): July 8, 1997
Communicated by: David H. Sharp
Article copyright: © Copyright 1999 American Mathematical Society