Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Accelerations of Riemannian quadratics


Author: Lyle Noakes
Journal: Proc. Amer. Math. Soc. 127 (1999), 1827-1836
MSC (1991): Primary 53B20, 53B99; Secondary 41A15, 41A29, 41A99
Published electronically: February 18, 1999
MathSciNet review: 1486744
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A Riemannian corner-cutting algorithm generalizing a classical construction for quadratics was previously shown by the author to produce a $C^1$ curve $p_\infty$ whose derivative is Lipschitz. The present paper takes the analysis of $p_\infty$ a step further by proving that it possesses left and right accelerations everywhere. Two-sided accelerations are shown to exist on the complement of a countable dense subset $D$ of the domain. The results are shown to be sharp in the following sense. For almost any scaled triple in Euclidean space there is a Riemannian perturbation of the Euclidean metric such that the two-sided accelerations of the resulting curve $p_\infty$ exist nowhere in $D$.


References [Enhancements On Off] (What's this?)

  • 1. Alfred S. Cavaretta, Wolfgang Dahmen, and Charles A. Micchelli, Stationary subdivision, Mem. Amer. Math. Soc. 93 (1991), no. 453, vi+186. MR 1079033, 10.1090/memo/0453
  • 2. Sylvestre Gallot, Dominique Hulin, and Jacques Lafontaine, Riemannian geometry, 2nd ed., Universitext, Springer-Verlag, Berlin, 1990. MR 1083149
  • 3. Raghavan Narasimhan, Analysis on real and complex manifolds, 2nd ed., Masson & Cie, Éditeur, Paris; North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973. Advanced Studies in Pure Mathematics, Vol. 1. MR 0346855
  • 4. Georges de Rham, Sur quelques fonctions différentiables dont toutes les valeurs sont des valeurs critiques, Celebrazioni Archimedee del Sec. XX (Siracusa, 1961) Edizioni “Oderisi”, Gubbio, 1962, pp. 61–65 (French). MR 0151566
  • 5. Georges de Rham, Un peu de mathématiques à propos d’une courbe plane, Elemente der Math. 2 (1947), 73–76, 89–97 (French). MR 0022685
  • 6. Georges de Rham, Sur certaines équations fonctionnelles, École Polytechnique de l’Université de Lausanne, Centenaire 1853–1953, École Polytechnique, Lausanne, 1953, pp. 95–97 (French). MR 0090627
  • 7. Georges de Rham, Sur une courbe plane, J. Math. Pures Appl. (9) 35 (1956), 25–42 (French). MR 0090628
  • 8. Georges de Rham, Sur les courbes limites de polygones obtenus par trisection, Enseignement Math. (2) 5 (1959), 29–43 (French). MR 0108796
  • 9. J. Lyle Noakes, Asymptotically smooth splines, Advances in computational mathematics (New Delhi, 1993) Ser. Approx. Decompos., vol. 4, World Sci. Publ., River Edge, NJ, 1994, pp. 131–137. MR 1338844
  • 10. -, A global algorithm for geodesics, to appear in Bull. Austral. Math. Soc. Series A.
  • 11. -, Riemannian quadratics, submitted to Proc. Third Chamonix Conference on Curves and Surfaces, A. Le Méhauté, C. Rabut and L. L. Schumaker (eds.) (1997), 319-328.
  • 12. H. von Koch, Sur une courbe continue sans tangente obtenue par une construction géométrique élémentaire, Arkiv. Mat. Astronomik Fysik 1 (1904), 681-702.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 53B20, 53B99, 41A15, 41A29, 41A99

Retrieve articles in all journals with MSC (1991): 53B20, 53B99, 41A15, 41A29, 41A99


Additional Information

Lyle Noakes
Affiliation: Department of Mathematics, The University of Western Australia, Nedlands, Western Australia 6907, Australia
Email: lyle@maths.uwa.edu.au

DOI: http://dx.doi.org/10.1090/S0002-9939-99-04809-1
Keywords: Geodesic, parallel translation, corner-cutting
Received by editor(s): December 7, 1996
Received by editor(s) in revised form: June 11, 1997
Published electronically: February 18, 1999
Communicated by: Christopher Croke
Article copyright: © Copyright 1999 American Mathematical Society