Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The Wiener transform
on the Besicovitch spaces


Author: Christopher Heil
Journal: Proc. Amer. Math. Soc. 127 (1999), 2065-2071
MSC (1991): Primary 42A38; Secondary 42A75, 46B03
DOI: https://doi.org/10.1090/S0002-9939-99-04798-X
Published electronically: February 26, 1999
MathSciNet review: 1487371
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In his fundamental research on generalized harmonic analysis, Wiener proved that the integrated Fourier transform defined by $Wf(\gamma ) = \int f(t) \, (e^{-2\pi i \gamma t} - \chi _{[-1,1]}(t))/(-2\pi i t) \, dt$ is an isometry from a nonlinear space of functions of bounded average quadratic power into a nonlinear space of functions of bounded quadratic variation. We consider this Wiener transform on the larger, linear, Besicovitch spaces ${\mathcal{B}}_{p,q}({\mathbf{R}})$ defined by the norm $\|f \|_{{\mathcal{B}}_{p,q}} = \bigl (\int _{0}^{\infty }\bigl (\frac{1}{2T} \int _{-T}^{T} |f(t)|^{p} \, dt\bigr )^{q/p} \frac{dT}{T}\bigr )^{1/q}$. We prove that $W$ maps ${\mathcal{B}}_{p,q}({\mathbf{R}})$ continuously into the homogeneous Besov space ${\dot {B}}^{1/p'}_{p',q}({\mathbf{R}})$ for $1 < p \le 2$ and $1 < q \le \infty $, and is a topological isomorphism when $p=2$.


References [Enhancements On Off] (What's this?)

  • [BBE] J. Benedetto, G. Benke, and W. Evans, An $n$-dimensional Wiener-Plancherel formula, Adv. in Appl. Math. 10 (1989), 457-487. MR 91h:42014
  • [Bene] J. Benedetto, The spherical Wiener-Plancherel formula and spectral estimation, SIAM J. Math. Anal. 22 (1991), 1110-1130. MR 92h:42028
  • [Benk] G. Benke, A spherical Wiener-Plancherel formula, J. Math. Anal. Appl. 171 (1992), 418-435. MR 94a:43016
  • [Beur] A. Beurling, Construction and analysis of some convolution algebras, Ann. Inst. Fourier (Grenoble) 14 (1964), 1-32. MR 32:321
  • [CL] Y.-Z. Chen and K.-S. Lau, Wiener transformation of functions with bounded averages, Proc. Amer. Math. Soc. 108 (1990), 411-421. MR 90g:42018
  • [F] H. G. Feichtinger, An elementary approach to Wiener's third Tauberian theorem, Sympos. Math. 29 (1988), 267-301. MR 89i:42023
  • [HW] P. Hartman and A. Wintner, The $(L^{2})$-space of relative measure, Proc. Nat. Acad. Sci. 33 (1947), 128-132.
  • [M] J. Marcinkiewicz, Une remarque sur les espaces de M. Besikowitch, C. R. Acad. Sci. Paris 208 (1939), 157-159.
  • [T] H. Triebel, Theory of Function Spaces II, Birkhäuser, Boston, 1992. MR 93f:46029
  • [W] N. Wiener, Generalized harmonic analysis, Acta Math. 55 (1930), 117-258.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 42A38, 42A75, 46B03

Retrieve articles in all journals with MSC (1991): 42A38, 42A75, 46B03


Additional Information

Christopher Heil
Affiliation: School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332-0160
Email: heil@math.gatech.edu

DOI: https://doi.org/10.1090/S0002-9939-99-04798-X
Keywords: Besicovitch spaces, Besov spaces, Marcinkiewicz spaces, Wiener--Plancherel formula, Wiener transform
Received by editor(s): August 20, 1996
Received by editor(s) in revised form: October 8, 1997
Published electronically: February 26, 1999
Additional Notes: This research was supported by National Science Foundation Grant DMS-9401340.
Communicated by: J. Marshall Ash
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society