Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the structure of periodic modules
over tame algebras


Author: Andrzej Skowronski
Journal: Proc. Amer. Math. Soc. 127 (1999), 1941-1949
MSC (1991): Primary 16G60, 16G70
DOI: https://doi.org/10.1090/S0002-9939-99-04855-8
Published electronically: March 8, 1999
MathSciNet review: 1600141
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We describe the structure of stable tubes in the Auslander-Reiten quivers of tame algebras formed by indecomposable modules which do not lie on infinite short cycles. In particular, we prove that all algebras whose module categories have no infinite short cycles are of linear growth.


References [Enhancements On Off] (What's this?)

  • [1] I. Assem, J. Nehring and A. Skowro\'{n}ski, Domestic trivial extensions of simply connected algebras, Tsukuba J. Math. 13 (1989), 31-72. MR 90j:16043
  • [2] M. Auslander and I. Reiten, Modules determined by their composition factors, Illinois J. Math. 29 (1985), 280-301. MR 86i:16032
  • [3] M. Auslander, I. Reiten and S. O. Smalø, Representation theory of Artin algebras, Cambridge studies in advanced math. 36, (Cambridge University Press, 1995). MR 96c:16015
  • [4] K. Bongartz, Critical simply connected algebras, Manuscr. Math. 46 (1984), 117-136. MR 85j:16026
  • [5] W. Crawley-Boevey, On tame algebras and bocses, Proc. London Math. Soc. 56 (1988), 451-483. MR 89c:16028
  • [6] W. Crawley-Boevey, Tame algebras and generic modules, Proc. London Math. Soc. 63 (1991), 241-264. MR 92m:16019
  • [7] Y. A. Drozd, Tame and wild matrix problems, in: Representation Theory II, Lecture Notes in Math. 832 (Springer-Verlag, 1980), 242-258. MR 83b:16024
  • [8] P. Gabriel, The universal cover of a representation-finite algebra, in: Representations of Algebras, Lecture Notes in Math. 903 (Springer-Verlag, 1981), 68-105. MR 83f:16036
  • [9] D. Happel and S. Liu, Module categories without short cycles are of finite type, Proc. Amer. Math. Soc. 120 (1994), 371-375. MR 94d:16010
  • [10] D. Happel, U. Preiser and C. M. Ringel, Vingberg's characterization of Dynkin diagrams using subadditive functions with application to $D\operatorname{Tr}$-periodic modules, in: Representation Theory II, Lecture Notes in Math. 832 (Springer-Verlag, 1980), 280-294.MR 82g:16027
  • [11] D. Happel, I. Reiten and S. O. Smalø, Tilting in abelian categories and quasi-tilted algebras, Memoirs Amer. Math. Soc. 120 (1996). MR 97j:16009
  • [12] D. Happel and D. Vossieck, Minimal algebras of infinite type with preprojective component, Manuscr. Math. 42 (1983), 221-243. MR 84m:16022
  • [13] O. Kerner, Tilting wild algebras, J. London Math. Soc. 39 (1989), 29-47. MR 90d:16025
  • [14] O. Kerner and A. Skowro\'{n}ski, On module categories with nilpotent infinite radical, Compositio Math. 77 (1991), 313-333. MR 92b:16011
  • [15] H. Lenzing and A. Skowro\'{n}ski, Quasi-tilted algebras of canonical type, Colloq. Math. 71 (1996), 161-181. MR 97j:16019
  • [16] S. Liu, Tilted algebras and generalized standard Auslander-Reiten components, Archiv. Math. 61 (1993), 12-19. MR 94g:16017
  • [17] S. Liu, Semi-stable components of an Auslander-Reiten quiver, J. London Math. Soc. 47 (1993), 405-416. MR 94a:16024
  • [18] S. Liu, On short cycles in a module category, J. London Math. Soc. 51 (1995), 62-74. MR 96e:16015
  • [19] J. A. de la Peña and B. Tomé, Iterated tubular algebras, J. Pure Appl. Algebra 64 (1990), 303-314. MR 91h:16028
  • [20] I. Reiten, A. Skowro\'{n}ski and S. O. Smalø, Short chains and short cycles of modules, Proc. Amer. Math. Soc. 117 (1993), 343-354. MR 93d:16018
  • [21] C. M. Ringel, Tame algebras, in: Representation Theory I, Lecture Notes in Math. 831 (Springer-Verlag, 1980), 137-287. MR 82j:16056
  • [22] C. M. Ringel, Tame algebras and integral quadratic forms, Lecture Notes in Math. 1099 (Springer-Verlag, 1984). MR 87f:16027
  • [23] A. Skowro\'{n}ski, Selfinjective algebras of polynomial growth, Math. Ann. 285 (1989), 177-199. MR 90k:16024
  • [24] A. Skowro\'{n}ski, Algebras of polynomial growth, in: Topics in Algebra, Banach Center Publications, Vol. 26, Part 1 (PWN, Warszawa, 1990), 535-568. MR 93k:16026
  • [25] A. Skowro\'{n}ski, Generalized standard Auslander-Reiten components, J. Math. Soc. Japan 46 (1994), 517-543. MR 95d:16022
  • [26] A. Skowro\'{n}ski, On the composition factors of periodic modules, J. London Math. Soc. 49 (1994), 477-492. MR 95g:16011
  • [27] A. Skowro\'{n}ski, Minimal representation-infinite artin algebras, Math. Proc. Camb. Phil. Soc. 116 (1994), 229-243. MR 95h:16015
  • [28] A. Skowro\'{n}ski, Cycle-finite algebras, J. Pure Appl. Algebra 103 (1995), 105-116. MR 96i:16023
  • [29] A. Skowro\'{n}ski, Module categories over tame algebras, in: Representation Theory of Algebras and Related Topics, CMS Conference Proc. 19 (AMS, 1996), 281-313. MR 97e:16033
  • [30] A. Skowro\'{n}ski, Simply connected algebras of polynomial growth, Compositio Math. 109 (1977), 99-133. CMP 98:02
  • [31] A. Skowro\'{n}ski, Tame quasi-tilted algebras, J. Algebra 203 (1998), 470-490. CMP 98:12

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 16G60, 16G70

Retrieve articles in all journals with MSC (1991): 16G60, 16G70


Additional Information

Andrzej Skowronski
Affiliation: Faculty of Mathematics and Informatics, Nicholas Copernicus University, Chopina 12/18, 87–100 Toruń, Poland
Email: skowron@mat.uni.torun.pl

DOI: https://doi.org/10.1090/S0002-9939-99-04855-8
Received by editor(s): May 28, 1997
Received by editor(s) in revised form: September 26, 1997
Published electronically: March 8, 1999
Additional Notes: The research was supported by the Polish Scientific Grant KBN No. 2P03A 020 08
Communicated by: Ken Goodearl
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society