On the product of two generalized derivations

Authors:
Mohamed Barraa and Steen Pedersen

Journal:
Proc. Amer. Math. Soc. **127** (1999), 2679-2683

MSC (1991):
Primary 47B47, 46L40

Published electronically:
April 15, 1999

MathSciNet review:
1610904

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Two elements and in a ring determine a generalized derivation on by setting for any in . We characterize when the product is a *generalized derivation* in the cases when the ring is the algebra of all bounded operators on a Banach space , and when is a -algebra . We use these characterizations to compute the commutant of the range of .

**[Br]**Matej Brešar,*On the distance of the composition of two derivations to the generalized derivations*, Glasgow Math. J.**33**(1991), no. 1, 89–93. MR**1089958**, 10.1017/S0017089500008077**[Ch]**Paul R. Chernoff,*Representations, automorphisms, and derivations of some operator algebras*, J. Functional Analysis**12**(1973), 275–289. MR**0350442****[CF]**Raúl E. Curto and Lawrence A. Fialkow,*The spectral picture of (𝐿_{𝐴},𝑅_{𝐵})*, J. Funct. Anal.**71**(1987), no. 2, 371–392. MR**880986**, 10.1016/0022-1236(87)90010-3**[FS]**C. K. Fong and A. R. Sourour,*On the operator identity ∑𝐴_{𝑘}𝑋𝐵_{𝑘}≡0*, Canad. J. Math.**31**(1979), no. 4, 845–857. MR**540912**, 10.4153/CJM-1979-080-x**[Ka]**Richard V. Kadison,*Derivations of operator algebras*, Ann. of Math. (2)**83**(1966), 280–293. MR**0193527****[Ma1]**Martin Mathieu,*Properties of the product of two derivations of a 𝐶*-algebra*, Canad. Math. Bull.**32**(1989), no. 4, 490–497. MR**1019418**, 10.4153/CMB-1989-072-4**[Ma2]**Martin Mathieu,*Elementary operators on prime 𝐶*-algebras. I*, Math. Ann.**284**(1989), no. 2, 223–244. MR**1000108**, 10.1007/BF01442873**[Pe]**G. K. Pedersen,*-algebras and their automorphism groups*, Academic Press, London, 1979.**[Ped]**Steen Pedersen,*The product of two (unbounded) derivations*, Canad. Math. Bull.**33**(1990), no. 3, 345–348. MR**1077109**, 10.4153/CMB-1990-058-0**[Po]**Edward C. Posner,*Derivations in prime rings*, Proc. Amer. Math. Soc.**8**(1957), 1093–1100. MR**0095863**, 10.1090/S0002-9939-1957-0095863-0**[Sa1]**Shôichirô Sakai,*Derivations of 𝑊*-algebras*, Ann. of Math. (2)**83**(1966), 273–279. MR**0193528****[Sa2]**Shôichirô Sakai,*Operator algebras in dynamical systems*, Encyclopedia of Mathematics and its Applications, vol. 41, Cambridge University Press, Cambridge, 1991. The theory of unbounded derivations in 𝐶*-algebras. MR**1136257****[Se]**Peter Šemrl,*Ring derivations on standard operator algebras*, J. Funct. Anal.**112**(1993), no. 2, 318–324. MR**1213141**, 10.1006/jfan.1993.1035**[Wi]**J. P. Williams,*On the range of a derivation*, Pacific J. Math.**38**(1971), 273–279. MR**0308809**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
47B47,
46L40

Retrieve articles in all journals with MSC (1991): 47B47, 46L40

Additional Information

**Mohamed Barraa**

Affiliation:
Departement de Mathematiques, Faculte des Sciences–Semlalia, University Cadi Ayyad, B.P.: S. 15, 40000 Marrakech, Marocco

**Steen Pedersen**

Affiliation:
Department of Mathematics, Wright State University, Dayton, Ohio 45435

Email:
steen@math.wright.edu

DOI:
https://doi.org/10.1090/S0002-9939-99-04899-6

Keywords:
Derivation,
generalized derivation,
elementary operator,
$C^{*}$--algebra

Received by editor(s):
December 30, 1996

Received by editor(s) in revised form:
November 20, 1997

Published electronically:
April 15, 1999

Communicated by:
Palle E. T. Jorgensen

Article copyright:
© Copyright 1999
American Mathematical Society