Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

A local version of Wong-Rosay's theorem
for proper holomorphic mappings


Author: Nabil Ourimi
Journal: Proc. Amer. Math. Soc. 128 (2000), 831-836
MSC (1991): Primary 32H35
Published electronically: September 27, 1999
MathSciNet review: 1676292
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In the present paper, we generalize Wong-Rosay's theorem for proper holomorphic mappings with bounded multiplicity. As an application, we prove the non-existence of a proper holomorphic mapping from a bounded, homogenous domain in $\mathbb{C}^n$ onto a domain in $\mathbb{C}^n$ whose boundary contains strongly pseudoconvex points.


References [Enhancements On Off] (What's this?)

  • [1] Eric Bedford, Proper holomorphic mappings from domains with real analytic boundary, Amer. J. Math. 106 (1984), no. 3, 745–760. MR 745150, 10.2307/2374294
  • [2] E. Bedford and S. Bell, Boundary behavior of proper holomorphic correspondences, Math. Ann. 272 (1985), no. 4, 505–518. MR 807287, 10.1007/BF01455863
  • [3] Eric Bedford and Steve Bell, Boundary continuity of proper holomorphic correspondences, Séminaire d’analyse P. Lelong-P. Dolbeault-H. Skoda, années 1983/1984, Lecture Notes in Math., vol. 1198, Springer, Berlin, 1986, pp. 47–64. MR 874760, 10.1007/BFb0077042
  • [4] François Berteloot, Un principe de localisation pour les domaines faiblement pseudoconvexes de 𝐶² dont le groupe d’automorphismes holomorphes n’est pas compact, Astérisque 217 (1993), 5, 13–27 (French, with French summary). Colloque d’Analyse Complexe et Géométrie (Marseille, 1992). MR 1247748
  • [5] E. M. Chirka, Complex analytic sets, Mathematics and its Applications (Soviet Series), vol. 46, Kluwer Academic Publishers Group, Dordrecht, 1989. Translated from the Russian by R. A. M. Hoksbergen. MR 1111477
  • [6] W. Klingenberg and S. Pinchuk, Normal families of proper holomorphic correspondences, Math. Z. 207 (1991), no. 1, 91–96. MR 1106815, 10.1007/BF02571377
  • [7] E. B. Lin and B. Wong, Curvature and proper holomorphic mappings between bounded domains in 𝐶ⁿ, Rocky Mountain J. Math. 20 (1990), no. 1, 179–197. MR 1057987, 10.1216/rmjm/1181073171
  • [8] S.Pinchuk, Holomorphic inequivalences of somes classes of domains in $\mathbb{C}^n$, Math. USSR Sbornik. 39, (1981) 61-68.
  • [9] K.Oeljeklaus and E.H.Youssfi, Proper holomorphic mappings and related automorphism groups, to appear in Journal of Geometric Analysis.
  • [10] Jean-Pierre Rosay, Sur une caractérisation de la boule parmi les domaines de 𝐶ⁿ par son groupe d’automorphismes, Ann. Inst. Fourier (Grenoble) 29 (1979), no. 4, ix, 91–97 (French, with English summary). MR 558590
  • [11] Walter Rudin, Proper holomorphic maps and finite reflection groups, Indiana Univ. Math. J. 31 (1982), no. 5, 701–720. MR 667790, 10.1512/iumj.1982.31.31050
  • [12] Karl Stein, Maximale holomorphe und meromorphe Abbildungen. II, Amer. J. Math. 86 (1964), 823–868 (German). MR 0171030
  • [13] Karl Stein, Topics on holomorphic correspondences, Rocky Mountain J. Math. 2 (1972), no. 3, 443–463. MR 0311945
  • [14] Vasiliy Sergeyevich Vladimirov, Methods of the theory of functions of many complex variables, Translated from the Russian by Scripta Technica, Inc. Translation edited by Leon Ehrenpreis, The M.I.T. Press, Cambridge, Mass.-London, 1966. MR 0201669
  • [15] B. Wong, Characterization of the unit ball in 𝐶ⁿ by its automorphism group, Invent. Math. 41 (1977), no. 3, 253–257. MR 0492401

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 32H35

Retrieve articles in all journals with MSC (1991): 32H35


Additional Information

Nabil Ourimi
Affiliation: C.M.I., 39 rue Joliot-Curie, 13453 Marseille Cedex 13, France
Address at time of publication: Faculte des Sciences de Monastir, Route de Kairouan, 5000 Monastir, Tunisia
Email: ourimi@gyptis.univ-mrs.fr

DOI: https://doi.org/10.1090/S0002-9939-99-05428-3
Keywords: Proper holomorphic mappings, correspondences, scaling methods
Received by editor(s): April 29, 1998
Published electronically: September 27, 1999
Communicated by: Steven R. Bell
Article copyright: © Copyright 1999 American Mathematical Society