Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The number of knot group representations
is not a Vassiliev invariant


Author: Michael Eisermann
Journal: Proc. Amer. Math. Soc. 128 (2000), 1555-1561
MSC (1991): Primary 57M25
DOI: https://doi.org/10.1090/S0002-9939-99-05287-9
Published electronically: October 5, 1999
MathSciNet review: 1657727
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For a finite group $G$ and a knot $K$ in the $3$-sphere, let $F_G(K)$ be the number of representations of the knot group into $G$. In answer to a question of D.Altschuler we show that $F_G$ is either constant or not of finite type. Moreover, $F_G$ is constant if and only if $G$ is nilpotent. We prove the following, more general boundedness theorem: If a knot invariant $F$ is bounded by some function of the braid index, the genus, or the unknotting number, then $F$ is either constant or not of finite type.


References [Enhancements On Off] (What's this?)

  • 1. D.Altschuler: Representation of knot groups and Vassiliev invariants. J. Knot Theory Ramifications 5 (1996), 421-425 MR 98c:57001
  • 2. D.Bar-Natan: On the Vassiliev knot invariants. Topology 34 (1995), 423-472 MR 97d:57004
  • 3. D.Bar-Natan: Polynomial invariants are polynomial. Math. Res. Lett. 2 (1995), 239-246 MR 96c:57006
  • 4. J.S.Birman: Braids, links, and mapping class groups. Annals of Mathematics Studies, No.82, Princeton University Press, Princeton 1974 MR 57:11477
  • 5. G.Burde, H.Zieschang: Knots. de Gruyter Studies in Mathematics, Walter de Gruyter & Co., Berlin 1985 MR 87b:57004
  • 6. J.Dean: Many classical knot invariants are not Vassiliev invariants. J. Knot Theory Ramifications 3 (1994), 7-9 MR 94k:57008
  • 7. F.Gonzalez-Acuña: Homomorphs of knot groups. Ann. of Math. (2) 102 (1975), 373-377 MR 52:576
  • 8. B.Huppert: Endliche Gruppen I. Grundlehren der Mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin 1967 MR 37:302
  • 9. D.Johnson: Homomorphs of knot groups. Proc. Amer. Math. Soc. 78 (1980), 135-138 MR 80j:57004
  • 10. S.Lambropoulou, C.P.Rourke: Markov's theorem in $3$-manifolds. Topology Appl. 78 (1997), Special issue on braid groups and related topics, 95-122 CMP 97:16
  • 11. L.P.Neuwirth: Knot groups. Annals of Mathematics Studies, No.56, Princeton University Press, Princeton 1965 MR 31:734
  • 12. R.Trapp: Twist sequences and Vassiliev invariants. J. Knot Theory Ramifications 3 (1994), 391-405 MR 95h:57012
  • 13. S.Yamada: The minimal number of Seifert circles equals the braid index of a link. Invent. Math. 89 (1987), 347-356. MR 88f:57015
  • 14. M.Zorn: Nilpotency of finite groups. Bull. Amer. Math. Soc. 42 (1936), 485-486

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 57M25

Retrieve articles in all journals with MSC (1991): 57M25


Additional Information

Michael Eisermann
Affiliation: Mathematisches Institut der Universität Bonn, Beringstr.1, 53115 Bonn, Germany
Email: eiserm@math.uni-bonn.de

DOI: https://doi.org/10.1090/S0002-9939-99-05287-9
Received by editor(s): July 9, 1998
Published electronically: October 5, 1999
Communicated by: Ronald A. Fintushel
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society