On the scarcity of latticeordered matrix algebras II
Author:
Stuart A. Steinberg
Journal:
Proc. Amer. Math. Soc. 128 (2000), 16051612
MSC (1991):
Primary 06F25; Secondary 15A48
Published electronically:
September 23, 1999
MathSciNet review:
1641109
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We correct and complete Weinberg's classification of the latticeorders of the matrix ring and show that this classification holds for the matrix algebra where is any totally ordered field. In particular, the latticeorder of obtained by stipulating that a matrix is positive precisely when each of its entries is positive is, up to isomorphism, the only latticeorder of with . It is also shown, assuming a certain maximum condition, that is essentially the only latticeorder of the algebra in which the identity element is positive.
 1.
A.
A. Albert, On ordered algebras, Bull. Amer. Math. Soc. 46 (1940), 521–522. MR 0001972
(1,328e), http://dx.doi.org/10.1090/S000299041940072520
 2.
Garrett
Birkhoff and R.
S. Pierce, Latticeordered rings, An. Acad. Brasil. Ci.
28 (1956), 41–69. MR 0080099
(18,191d)
 3.
Paul
Conrad, The lattice of all convex 𝑙subgroups of a
latticeordered group, Czechoslovak Math. J. 15 (90)
(1965), 101–123 (English, with Russian summary). MR 0173716
(30 #3926)
 4.
P. Conrad, Latticeordered groups, Tulane Lecture Notes, Tulane University, 1970.
 5.
L.
Fuchs, Partially ordered algebraic systems, Pergamon Press,
Oxford, 1963. MR
0171864 (30 #2090)
 6.
Melvin
Henriksen and J.
R. Isbell, Latticeordered rings and function rings, Pacific
J. Math. 12 (1962), 533–565. MR 0153709
(27 #3670)
 7.
D.
G. Johnson, A structure theory for a class of latticeordered
rings, Acta Math. 104 (1960), 163–215. MR 0125141
(23 #A2447)
 8.
Stuart
A. Steinberg, Finitelyvalued 𝑓modules, Pacific J.
Math. 40 (1972), 723–737. MR 0306078
(46 #5205)
 9.
Stuart
A. Steinberg, Unital 𝑙prime latticeordered
rings with polynomial constraints are domains, Trans. Amer. Math. Soc. 276 (1983), no. 1, 145–164. MR 684499
(84d:16050), http://dx.doi.org/10.1090/S00029947198306844996
 10.
Stuart
A. Steinberg, Central 𝑓elements in latticeordered
algebras, Ordered algebraic structures (Gainesville, FL, 1991)
Kluwer Acad. Publ., Dordrecht, 1993, pp. 203–223. MR 1247306
(96d:06023)
 11.
Madhav
V. Tamhankar, On algebraic extensions of subrings in an ordered
ring, Algebra Universalis 14 (1982), no. 1,
25–35. MR
634413 (83f:06029), http://dx.doi.org/10.1007/BF02483904
 12.
E.
C. Weinberg, On the scarcity of latticeordered matrix rings,
Pacific J. Math. 19 (1966), 561–571. MR 0202775
(34 #2635)
 1.
 A. A. Albert, On ordered algebras, Bull. Am. Math. Soc. 46 (1940), 521522.MR 1:328e
 2.
 G. Birkhoff and R. S. Pierce, Latticeordered rings, An. Acad. Brasil 28 (1956), 4169.MR 18:191d
 3.
 P. Conrad, The lattice of all convex subgroups of a latticeordered group, Czechoslovak Math. J. 15 (1965), 101123. MR 30:3926
 4.
 P. Conrad, Latticeordered groups, Tulane Lecture Notes, Tulane University, 1970.
 5.
 L. Fuchs, Partially ordered algebraic systems, Akademia Kiadó, Budapest, 1963. MR 30:2090
 6.
 M. Henriksen and J.R. Isbell, Latticeordered rings and function rings, Pacific J. Math. 12 (1962), 533565. MR 27:3670
 7.
 D. G. Johnson, A structure theory for a class of latticeordered rings, Acta. Math. 104 (1960), 163215. MR 23:A2447
 8.
 S. A. Steinberg, Finitelyvalued fmodules, Pacific J. Math. 40 (1972), 723737. MR 46:5205
 9.
 S. A. Steinberg, Unital prime latticeordered rings with polynomial constraints are domains, Trans. Amer. Math. Soc. 276 (1983), 145164. MR 84d:16050
 10.
 S. A. Steinberg, Central felements in latticeordered algebras, Ordered Algebraic Structures, Eds. J. Martinez and C. Holland, Kluwer (1993), 203223.MR 96d:06023
 11.
 M. V. Tamhankar, On algebraic extensions of subrings in an ordered ring, Algebra Universalis 14 (1982), 2535. MR 83f:06029
 12.
 E. C. Weinberg, On the scarcity of latticeordered matrix rings, Pacific J. Math. 19 (1966), 561571. MR 34:2635
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (1991):
06F25,
15A48
Retrieve articles in all journals
with MSC (1991):
06F25,
15A48
Additional Information
Stuart A. Steinberg
Affiliation:
Department of Mathematics, The University of Toledo, Toledo, Ohio 436063390
Email:
ssteinb@uoft02.utoledo.edu
DOI:
http://dx.doi.org/10.1090/S0002993999051710
PII:
S 00029939(99)051710
Keywords:
Latticeordered algebra,
matrix algebra
Received by editor(s):
March 27, 1998
Received by editor(s) in revised form:
July 17, 1998
Published electronically:
September 23, 1999
Communicated by:
Ken Goodearl
Article copyright:
© Copyright 2000 American Mathematical Society
