Uniqueness of the least-energy solution

for a semilinear Neumann problem

Author:
Massimo Grossi

Journal:
Proc. Amer. Math. Soc. **128** (2000), 1665-1672

MSC (1991):
Primary 35J70

Published electronically:
October 18, 1999

MathSciNet review:
1694340

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the least-energy solution of the problem

where is a ball, and if , if , is unique (up to rotation) if is small enough.

**[AR]**Antonio Ambrosetti and Paul H. Rabinowitz,*Dual variational methods in critical point theory and applications*, J. Functional Analysis**14**(1973), 349–381. MR**0370183****[BDS]**P. Bates, E.N. Dancer and J. Shi, ``*Multi-spike stationary solutions on the Cahn-Hilliard equation in higher dimension and instability*'', preprint.**[D]**E. N. Dancer,*On the uniqueness of the positive solution of a singularly perturbed problem*, Rocky Mountain J. Math.**25**(1995), no. 3, 957–975. MR**1357103**, 10.1216/rmjm/1181072198**[DY]**E.N. Dancer and S. Yan, ``*Multipeak solutions for a singularly perturbed Neumann problem*'' (to appear).**[GNN]**B. Gidas, Wei Ming Ni, and L. Nirenberg,*Symmetry of positive solutions of nonlinear elliptic equations in 𝑅ⁿ*, Mathematical analysis and applications, Part A, Adv. in Math. Suppl. Stud., vol. 7, Academic Press, New York-London, 1981, pp. 369–402. MR**634248****[GT]**David Gilbarg and Neil S. Trudinger,*Elliptic partial differential equations of second order*, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR**737190****[Gu]**Changfeng Gui,*Multipeak solutions for a semilinear Neumann problem*, Duke Math. J.**84**(1996), no. 3, 739–769. MR**1408543**, 10.1215/S0012-7094-96-08423-9**[K]**Man Kam Kwong,*Uniqueness of positive solutions of Δ𝑢-𝑢+𝑢^{𝑝}=0 in 𝑅ⁿ*, Arch. Rational Mech. Anal.**105**(1989), no. 3, 243–266. MR**969899**, 10.1007/BF00251502**[LN]**Chang Shou Lin and Wei-Ming Ni,*On the diffusion coefficient of a semilinear Neumann problem*, Calculus of variations and partial differential equations (Trento, 1986), Lecture Notes in Math., vol. 1340, Springer, Berlin, 1988, pp. 160–174. MR**974610**, 10.1007/BFb0082894**[LNT]**C.-S. Lin, W.-M. Ni, and I. Takagi,*Large amplitude stationary solutions to a chemotaxis system*, J. Differential Equations**72**(1988), no. 1, 1–27. MR**929196**, 10.1016/0022-0396(88)90147-7**[NT]**Wei-Ming Ni and Izumi Takagi,*On the shape of least-energy solutions to a semilinear Neumann problem*, Comm. Pure Appl. Math.**44**(1991), no. 7, 819–851. MR**1115095**, 10.1002/cpa.3160440705**[W1]**Zhi Qiang Wang,*On the existence of multiple, single-peaked solutions for a semilinear Neumann problem*, Arch. Rational Mech. Anal.**120**(1992), no. 4, 375–399. MR**1185568**, 10.1007/BF00380322**[W2]**Zhi-Qiang Wang,*Nonradial solutions of nonlinear Neumann problems in radially symmetric domains*, Topology in nonlinear analysis (Warsaw, 1994) Banach Center Publ., vol. 35, Polish Acad. Sci., Warsaw, 1996, pp. 85–96. MR**1448428**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
35J70

Retrieve articles in all journals with MSC (1991): 35J70

Additional Information

**Massimo Grossi**

Affiliation:
Dipartimento di Matematica, Università di Roma “La Sapienza", P.le A. Moro 2, 00185, Roma, Italy

Email:
grossi@mat.uniroma1.it

DOI:
https://doi.org/10.1090/S0002-9939-99-05491-X

Keywords:
Uniqueness results,
semilinear elliptic equations,
Neumann problem

Received by editor(s):
July 9, 1998

Published electronically:
October 18, 1999

Additional Notes:
This research was supported by M.U.R.S.T. (Project “Metodi Variazionali ed Equazioni Differenziali Non Lineari”)

Communicated by:
Lesley M. Sibner

Article copyright:
© Copyright 2000
American Mathematical Society