Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Oblique multiwavelets in Hilbert spaces


Author: Wai-Shing Tang
Journal: Proc. Amer. Math. Soc. 128 (2000), 2017-2031
MSC (2000): Primary 46C99, 47B99, 46B15
DOI: https://doi.org/10.1090/S0002-9939-99-05432-5
Published electronically: November 1, 1999
MathSciNet review: 1676357
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we elucidate the relationship between two consecutive levels of a multiresolution in the general setting of a Hilbert space. We first prove a result on an extendability problem and then derive, as a consequence, characterizations of oblique multiwavelets in a Hilbert space.


References [Enhancements On Off] (What's this?)

  • 1. A. Aldroubi, Oblique and hierarchical multiwavelet bases, Appl. Comput. Harmonic Anal. 4 (1997), 231-263. MR 98k:42037
  • 2. A. Aldroubi and M. Papadakis, Characterization and parametrization of multiwavelet bases, Contemporary Math. (1998). MR 99b:42010
  • 3. A. Cohen, I. Daubechies and J. C. Feauveau, Biorthogonal bases of compactly supported wavelets, Comm. Pure Appl. Math. XLV (1992), 485-560. MR 93e:42044
  • 4. T. N. T. Goodman, S. L. Lee and W. S. Tang, Wavelets in wandering subspaces, Trans. Amer. Math. Soc. 338 (1993), 639-654. MR 93j:42017
  • 5. T. N. T. Goodman, S. L. Lee and W. S. Tang, Wavelet bases for a set of commuting unitary operators, Adv. Comput. Math. 1 (1993), 109-126. MR 94h:42057
  • 6. R. Q. Jia and Z. W. Shen, Multiresolution and wavelets, Proc. Edinburgh Math. Soc. 37 (1994), 271-300. MR 95h:42035
  • 7. S. L. Lee, H. H. Tan and W. S. Tang, Wavelet bases for a unitary operator, Proc. Edinburgh Math. Soc. 38 (1995), 233-260. MR 96g:42019
  • 8. S. L. Lee and W. S. Tang, Characterizations of wavelet bases and frames in Hilbert spaces, Proc. SPIE. 3169 (1997), 282-290.
  • 9. M. A. Naimark, Normed Rings, Wolters-Noordhoff Publishing, Groningen, 1970. MR 50:8075
  • 10. W. S. Tang, Oblique projections, biorthogonal Riesz bases and multiwavelets in Hilbert spaces, Proc. Amer. Math. Soc. (to appear). CMP 98:14
  • 11. R. M. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, New York, 1980. MR 81m:42027

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46C99, 47B99, 46B15

Retrieve articles in all journals with MSC (2000): 46C99, 47B99, 46B15


Additional Information

Wai-Shing Tang
Affiliation: Department of Mathematics, National University of Singapore, 10 Kent Ridge Crescent, 119260, Republic of Singapore
Email: mattws@math.nus.edu.sg

DOI: https://doi.org/10.1090/S0002-9939-99-05432-5
Keywords: Riesz basis, biorthogonal system, oblique projection, multiwavelets
Received by editor(s): August 24, 1998
Published electronically: November 1, 1999
Communicated by: David R. Larson
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society