Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



When products of selfadjoints are normal

Authors: E. Albrecht and P. G. Spain
Journal: Proc. Amer. Math. Soc. 128 (2000), 2509-2511
MSC (2000): Primary 46H99; Secondary 47B15, 47B40
Published electronically: April 11, 2000
MathSciNet review: 1756087
Full-text PDF

Abstract | References | Similar Articles | Additional Information


Suppose that $ h, \, k \in \mathcal{L}(\mathcal{H})$ are two selfadjoint bounded operators on a Hilbert space $\mathcal{H}$. It is elementary to show that $hk$ is selfadjoint precisely when $hk = kh$. We answer the following question: Under what circumstances must $hk$ be selfadjoint given that it is normal?

References [Enhancements On Off] (What's this?)

  • 1. E. Albrecht, Funktionalkalküle in mehreren Veränderlichen für stetige lineare Operatoren auf Banachräumen, Man. Math. 14 (1974), 1-40. MR 50:5507
  • 2. E. Albrecht, On some classes of generalized spectral operators, Archiv der Mathematik 30 (1978), 297-303. MR 57:10486
  • 3. F.F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, 1973. MR 54:11013
  • 4. I. Colojoara and C. Foias, Theory of generalized spectral operators, Gordon and Breach, 1968. MR 52:15085
  • 5. P.R. Halmos, Hilbert Space Problem Book (Second Edition), Springer Verlag, 1982. MR 84e:47001
  • 6. M. Hladnik and M. Omladic, Spectrum of the Product of Operators, Proc. American Math. Soc. 102 (1988), 300-302. MR 90a:47008
  • 7. H. Radjavi and P. Rosenthal, On invariant subspaces and reflexive algebras, Amer. J. Math. 91 (1969), 683-692. MR 40:4796

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46H99, 47B15, 47B40

Retrieve articles in all journals with MSC (2000): 46H99, 47B15, 47B40

Additional Information

E. Albrecht
Affiliation: Fachbereich 9 Mathematik, Universität des Saarlandes, Postfach 151150, 66041 Saarbrücken, Germany

P. G. Spain
Affiliation: Department of Mathematics, University of Glasgow, Glasgow G12 8QW, Scotland

Keywords: Hilbert space, operator, normal, selfadjoint, hermitian, numerical range, Banach algebra
Received by editor(s): November 15, 1999
Published electronically: April 11, 2000
Communicated by: David R. Larson
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society