Collapsibility of and some related CW complexes
Author:
Dmitry N. Kozlov
Journal:
Proc. Amer. Math. Soc. 128 (2000), 22532259
MSC (2000):
Primary 05E25
Published electronically:
December 7, 1999
MathSciNet review:
1662257
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let denote the order complex of the partition lattice. The natural action on the set induces an action on . We show that the regular CW complex is collapsible. Even more, we show that is collapsible, where is a suitable type selection of the partition lattice. This allows us to generalize and reprove in a conceptual way several previous results regarding the multiplicity of the trivial character in the representation on .
 [1]
E. Babson, A. Björner, S. Linusson, J. Shareshian, V. Welker, Complexes of not connected graphs, Topology 38 (1999), 271299. CMP 99:05
 [2]
Anders
Björner, Shellable and CohenMacaulay partially
ordered sets, Trans. Amer. Math. Soc.
260 (1980), no. 1,
159–183. MR
570784 (81i:06001), http://dx.doi.org/10.1090/S00029947198005707842
 [3]
Anders
Björner, Subspace arrangements, First European Congress
of Mathematics, Vol.\ I (Paris, 1992) Progr. Math., vol. 119,
Birkhäuser, Basel, 1994, pp. 321–370. MR 1341828
(96h:52012)
 [4]
E. Babson, D. N. Kozlov, Group actions on posets, preprint, 1998.
 [5]
G. E. Bredon, Introduction to compact transformation groups, Academic Press, 1972.
 [6]
P.
E. Conner, Concerning the action of a finite group, Proc. Nat.
Acad. Sci. U.S.A. 42 (1956), 349–351. MR 0079272
(18,61a)
 [7]
E. M. Feichtner and D. N. Kozlov, On subspace arrangements of type , preprint 489/1995, TU Berlin, 21 pages, (to appear in the special FPSAC'96 issue of Discr. Math.).
 [8]
Erkki
Laitinen and Krzysztof
Pawałowski, Smith equivalence of representations
for finite perfect groups, Proc. Amer. Math.
Soc. 127 (1999), no. 1, 297–307. MR 1468195
(99b:57070), http://dx.doi.org/10.1090/S000299399904544X
 [9]
Sergei
I. Gelfand and Yuri
I. Manin, Methods of homological algebra, SpringerVerlag,
Berlin, 1996. Translated from the 1988 Russian original. MR 1438306
(97j:18001)
 [10]
Phil
Hanlon, A proof of a conjecture of Stanley concerning partitions of
a set, European J. Combin. 4 (1983), no. 2,
137–141. MR
705966 (85b:05020), http://dx.doi.org/10.1016/S01956698(83)800432
 [11]
Daniel
Quillen, Higher algebraic 𝐾theory. I, Algebraic
𝐾theory, I: Higher 𝐾theories (Proc. Conf., Battelle
Memorial Inst., Seattle, Wash., 1972) Springer, Berlin, 1973,
pp. 85–147. Lecture Notes in Math., Vol. 341. MR 0338129
(49 #2895)
 [12]
Graeme
Segal, Classifying spaces and spectral sequences, Inst. Hautes
Études Sci. Publ. Math. 34 (1968), 105–112.
MR
0232393 (38 #718)
 [13]
Richard
P. Stanley, Some aspects of groups acting on finite posets, J.
Combin. Theory Ser. A 32 (1982), no. 2,
132–161. MR
654618 (83d:06002), http://dx.doi.org/10.1016/00973165(82)900176
 [14]
Sheila
Sundaram, The homology representations of the symmetric group on
CohenMacaulay subposets of the partition lattice, Adv. Math.
104 (1994), no. 2, 225–296. MR 1273390
(96c:05189), http://dx.doi.org/10.1006/aima.1994.1030
 [15]
J.
Thévenaz and P.
J. Webb, Homotopy equivalence of posets with a group action,
J. Combin. Theory Ser. A 56 (1991), no. 2,
173–181. MR 1092846
(92k:20049), http://dx.doi.org/10.1016/00973165(91)90030K
 [16]
V.
A. Vassiliev, Complexes of connected graphs, The
Gel′fand Mathematical Seminars, 1990–1992, Birkhäuser
Boston, Boston, MA, 1993, pp. 223–235. MR 1247293
(94h:55032)
 [1]
 E. Babson, A. Björner, S. Linusson, J. Shareshian, V. Welker, Complexes of not connected graphs, Topology 38 (1999), 271299. CMP 99:05
 [2]
 A. Björner, Shellable and CohenMacaulay partially ordered sets, Trans. Amer. Math. Soc. 260 (1980), 159183. MR 81i:06001
 [3]
 A. Björner, Subspace arrangements, in ``First European Congress of Mathematics, Paris 1992'' (eds. A. Joseph et. al.), Progress in Math. 119, Birkhäuser, 1994, pp. 321370. MR 96h:52012
 [4]
 E. Babson, D. N. Kozlov, Group actions on posets, preprint, 1998.
 [5]
 G. E. Bredon, Introduction to compact transformation groups, Academic Press, 1972.
 [6]
 P. E. Conner, Concerning the action of a finite group, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 349351. MR 18:61a
 [7]
 E. M. Feichtner and D. N. Kozlov, On subspace arrangements of type , preprint 489/1995, TU Berlin, 21 pages, (to appear in the special FPSAC'96 issue of Discr. Math.).
 [8]
 R. Forman, Morse theory for cell complexes, Adv. Math. 134 (1998), no. 1, 90145. MR 99b:57070
 [9]
 S. Gelfand and Y. Manin, Methods of homological algebra, Translated from the 1998 Russian original, Springer, Berlin, 1996. MR 97j:18001
 [10]
 P. Hanlon, A proof of a conjecture of Stanley concerning partitions of a set, European J. Combin. 4 (1983), no. 2, 137141. MR 85b:05020
 [11]
 D. Quillen, Higher algebraic theory I, Lecture Notes in Mathematics, vol. 341, SpringerVerlag, 1973, pp. 85148. MR 49:2895
 [12]
 G. Segal, Classifying spaces and spectral sequences, Inst. Hautes Études Sci. Publ. Math. No. 34, 1968, pp. 105112. MR 38:718
 [13]
 R. P. Stanley, Some aspects of groups acting on finite posets, J. Combin. Theory Ser. A 32 (1982), no. 2, pp. 132161. MR 83d:06002
 [14]
 S. Sundaram, The homology representations of the symmetric group on CohenMacaulay subposets of the partition lattice, Adv. in Math. 104 (1994), 225296. MR 96c:05189
 [15]
 J. Thévenaz, P. J. Webb, Homotopy equivalence of posets with a group action, J. Comb. Theory, Ser. A 56 (1991), no. 2, 173181. MR 92k:20049
 [16]
 V. A. Vassiliev, Complexes of connected graphs, in: L. Corwin et al. (eds.), The Gelfand Mathematical Seminar, 19901992, Birkhäuser, Boston, pp. 223235. MR 94h:55032
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
05E25
Retrieve articles in all journals
with MSC (2000):
05E25
Additional Information
Dmitry N. Kozlov
Affiliation:
Institute for Advanced Study, Olden Lane, Princeton, New Jersey 08540
Address at time of publication:
Department of Mathematics, Royal Institute of Technology, 10044 Stockholm, Sweden
Email:
kozlov@math.ias.edu
DOI:
http://dx.doi.org/10.1090/S0002993999053010
PII:
S 00029939(99)053010
Received by editor(s):
August 6, 1998
Received by editor(s) in revised form:
September 18, 1998
Published electronically:
December 7, 1999
Communicated by:
John R. Stembridge
Article copyright:
© Copyright 2000
American Mathematical Society
