Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Spectrum of interpolated operators

Authors: Ernst Albrecht and Vladimir Müller
Journal: Proc. Amer. Math. Soc. 129 (2001), 807-814
MSC (2000): Primary 46B70, 47A10
Published electronically: September 20, 2000
MathSciNet review: 1804050
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information


Let $(X_0,X_1)$ be a compatible pair of Banach spaces and let $T$ be an operator that acts boundedly on both $X_0$ and $X_1$. Let $T_{[\theta]} \quad(0\le\theta\le 1)$ be the corresponding operator on the complex interpolation space $(X_0,X_1)_{[\theta]}$.

The aim of this paper is to study the spectral properties of $T_{[\theta]}$. We show that in general the set-valued function $\theta\mapsto \sigma(T_{[\theta]})$ is discontinuous even in inner points $\theta\in(0,1)$ and show that each operator satisfies the local uniqueness-of-resolvent condition of Ransford. Further we study connections with the real interpolation method.

References [Enhancements On Off] (What's this?)

  • [A] Ernst Albrecht, Spectral interpolation, Spectral theory of linear operators and related topics (Timişoara/Herculane, 1983) Oper. Theory Adv. Appl., vol. 14, Birkhäuser, Basel, 1984, pp. 13–37. MR 789606
  • [AS] E. Albrecht, K. Schindler, Spectrum of operators on real interpolation spaces, preprint.
  • [Au] Bernard Aupetit, A primer on spectral theory, Universitext, Springer-Verlag, New York, 1991. MR 1083349
  • [BL] Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Springer-Verlag, Berlin-New York, 1976. Grundlehren der Mathematischen Wissenschaften, No. 223. MR 0482275
  • [BKS] Yu. A. Brudnyĭ, S. G. Kreĭn, and E. M. Semënov, Interpolation of linear operators, Mathematical analysis, Vol. 24 (Russian), Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1986, pp. 3–163, 272 (Russian). Translated in J. Soviet Math 42 (1988), no. 6, 2009–2112. MR 887950
  • [C] A.-P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113–190. MR 0167830
  • [F] M.K. Fort, Points of continuity of semi-continuous functions, Publicationes mathematicae Debrecen 2 (1951-52), 100-102. MR 13:764e
  • [K] M. Krause, Fredholm theory of interpolation morphisms, Recent progress in operator theory (Regensburg, 1995) Oper. Theory Adv. Appl., vol. 103, Birkhäuser, Basel, 1998, pp. 219–231. MR 1635025
  • [R] T. J. Ransford, The spectrum of an interpolated operator and analytic multivalued functions, Pacific J. Math. 121 (1986), no. 2, 445–466. MR 819200
  • [S] Karen Saxe, On complex interpolation and spectral continuity, Studia Math. 130 (1998), no. 3, 223–229. MR 1625210
  • [Sl1] Zbigniew Słodkowski, Analytic set-valued functions and spectra, Math. Ann. 256 (1981), no. 3, 363–386. MR 626955,
  • [Sl2] Zbigniew Slodkowski, A generalization of Vesentini and Wermer’s theorems, Rend. Sem. Mat. Univ. Padova 75 (1986), 157–171. MR 847664
  • [Sv] I. Ja. Šneĭberg, Spectral properties of linear operators in interpolation families of Banach spaces, Mat. Issled. 9 (1974), no. 2(32), 214–229, 254–255 (Russian). MR 0634681
  • [T] H. Triebel, Interpolation theory, function spaces, differential operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978. MR 500580
    Hans Triebel, Interpolation theory, function spaces, differential operators, North-Holland Mathematical Library, vol. 18, North-Holland Publishing Co., Amsterdam-New York, 1978. MR 503903
  • [Z] Misha Zafran, Spectral theory and interpolation of operators, J. Funct. Anal. 36 (1980), no. 2, 185–204. MR 569253,

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46B70, 47A10

Retrieve articles in all journals with MSC (2000): 46B70, 47A10

Additional Information

Ernst Albrecht
Affiliation: Fachbereich Mathematik, Universität des Saarlandes, Postfach 15 11 50, D–66041 Saarbrücken, Germany

Vladimir Müller
Affiliation: Institut of Mathematics AV ČR, Zitna 25, 115 67 Prague 1, Czech Republic

Keywords: Spectrum of interpolated operators, uniqueness-of-resolvent property
Received by editor(s): September 25, 1998
Received by editor(s) in revised form: May 14, 1999
Published electronically: September 20, 2000
Additional Notes: The second author was supported by the Alexander von Humboldt Foundation and partially by grant no. 201/96/0411 of GA ČR
Communicated by: David R. Larson
Article copyright: © Copyright 2000 American Mathematical Society