Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Variational representations of Varadhan functionals


Authors: Harold Bell and Wlodzimierz Bryc
Journal: Proc. Amer. Math. Soc. 129 (2001), 2119-2125
MSC (2000): Primary 60F10
DOI: https://doi.org/10.1090/S0002-9939-00-05764-6
Published electronically: November 21, 2000
MathSciNet review: 1825925
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

Motivated by the theory of large deviations, we introduce a class of non-negative non-linear functionals that have a variational ``rate function" representation.


References [Enhancements On Off] (What's this?)

  • 1. M. Akian, Densities of idempotent measures and large deviations. Trans. Amer. Math. Soc. 351 (1999), 4515-4543. CMP 99:17
  • 2. H. Bergström, Weak convergence of measures. Acad. Press, New York, 1982. MR 84m:60027
  • 3. W. Bryc, On the large deviation principle by the asymptotic value method. In: Diffusion Processes and Related Problems in Analysis, Vol. I, ed. M. Pinsky, Birkhäuser, Boston, 1990, 447-472.
  • 4. A. de Acosta, Upper bounds for Large Deviations of Dependent Random Vectors. Zeitsch. Wahrscheinlichk. Theor. Verw. Gebiete 69 (1985), 551-565. MR 87f:60036
  • 5. A. Dembo & O. Zeitouni, Large Deviations Techniques and Applications. Jones and Bartlett, Boston, 1993. MR 95a:60034
  • 6. J-D. Deuschel & D. W. Stroock, Large Deviations. Pure and Applied Math vol. 137, Academic Press, Boston, 1989. MR 90h:60026
  • 7. N. Dunford & J. T. Schwartz, Linear Operators I. Interscience, New York, 1958. MR 90g:47001a
  • 8. P. Dupuis & R. S. Ellis, A Weak Convergence Approach to the Theory of Large Deviations. Wiley, New York, 1997. MR 99f:60057
  • 9. G. L. O'Brien, Sequences of capacities, with connections to large-deviation theory. J. Theoret. Probab. 9 (1996), 19-35. MR 97f:60065
  • 10. G. O'Brien & W. Vervaat, Compactness in the theory of large deviations. Stoch. Processes Appl. 57 (1995), 1-10. MR 96a:60030
  • 11. A. Puhalskii, Large deviations of Semimartingales: a Maxingale Problem Approach I. Stochastics 61 (1997), 141-243. MR 98h:60033
  • 12. S. R. S. Varadhan, Asymptotic probabilities and differential equations. Comm. Pure Appl. Math. 19 (1966), 261-286. MR 34:3083

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 60F10

Retrieve articles in all journals with MSC (2000): 60F10


Additional Information

Harold Bell
Affiliation: Department of Mathematics, University of Cincinnati, P.O. Box 210025, Cincinnati, Ohio 45221–0025
Email: bellh@math.uc.edu

Wlodzimierz Bryc
Affiliation: Department of Mathematics, University of Cincinnati, P.O. Box 210025, Cincinnati, Ohio 45221–0025
Email: brycwz@email.uc.edu

DOI: https://doi.org/10.1090/S0002-9939-00-05764-6
Keywords: Large deviation, \v{C}ech-Stone compactification, Varadhan functionals, rate functions
Received by editor(s): June 11, 1999
Received by editor(s) in revised form: November 10, 1999
Published electronically: November 21, 2000
Communicated by: Claudia Neuhauser
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society