Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Periodic points and normal families


Authors: Detlef Bargmann and Walter Bergweiler
Journal: Proc. Amer. Math. Soc. 129 (2001), 2881-2888
MSC (2000): Primary 30D05, 30D45, 37F10
Published electronically: February 9, 2001
MathSciNet review: 1840089
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract:

Let $\mathcal{F}$ be the family of all functions which are holomorphic in some domain and do not have periodic points of some period greater than one there. It is shown that $\mathcal{F}$ is quasinormal, and the sequences in $\mathcal{F}$ which do not have convergent subsequences are characterized. The method also yields a new proof of the result that transcendental entire functions have infinitely many periodic points of all periods greater than one.


References [Enhancements On Off] (What's this?)

  • 1. Lars Valerian Ahlfors, Collected papers. Vol. 1, Contemporary Mathematicians, Birkhäuser, Boston, Mass., 1982. 1929–1955; Edited with the assistance of Rae Michael Shortt. MR 688648
  • 2. I. N. Baker, Fixpoints of polynomials and rational functions, J. London Math. Soc. 39 (1964), 615–622. MR 0169989
  • 3. Walter Bergweiler, Periodic points of entire functions: proof of a conjecture of Baker, Complex Variables Theory Appl. 17 (1991), no. 1-2, 57–72. MR 1123803
  • 4. -, Periodische Punkte bei der Iteration ganzer Funktionen. Habilitationsschrift, Rheinisch-Westfälische Techn. Hochsch., Aachen 1991.
  • 5. Walter Bergweiler, A new proof of the Ahlfors five islands theorem, J. Anal. Math. 76 (1998), 337–347. MR 1676971, 10.1007/BF02786941
  • 6. Lennart Carleson and Theodore W. Gamelin, Complex dynamics, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR 1230383
  • 7. C.-T. Chuang, Normal Families of Meromorphic Functions, World Scientific, Singapore, 1993.
  • 8. Adrien Douady and John Hamal Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 2, 287–343. MR 816367
  • 9. Matts Essén and Shengjian Wu, Fix-points and a normal family of analytic functions, Complex Variables Theory Appl. 37 (1998), no. 1-4, 171–178. MR 1687872
  • 10. -, Repulsive fixpoints of analytic functions with applications to complex dynamics, J. London Math. Soc. (2) 62 (2000), 139-148.
  • 11. P. Fatou, Sur l'itération des fonctions transcendantes entières, Acta Math. 47 (1926), 337-360.
  • 12. W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964. MR 0164038
  • 13. W. K. Hayman, Research problems in function theory, The Athlone Press University of London, London, 1967. MR 0217268
  • 14. P. Montel, Leçons sur les familles normales des fonctions analytiques et leurs applications, Gauthier-Villars, Paris, 1927.
  • 15. Rolf Nevanlinna, Eindeutige analytische Funktionen, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Bd XLVI, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1953 (German). 2te Aufl. MR 0057330
  • 16. Paul Charles Rosenbloom, L’itération des fonctions entières, C. R. Acad. Sci. Paris 227 (1948), 382–383 (French). MR 0026691
  • 17. Joel L. Schiff, Normal families, Universitext, Springer-Verlag, New York, 1993. MR 1211641
  • 18. Lo Yang, Some recent results and problems in the theory of value-distribution, Proceedings Symposium on Value Distribution Theory in Several Complex Variables (Notre Dame, IN, 1990) Notre Dame Math. Lectures, vol. 12, Univ. Notre Dame Press, Notre Dame, IN, 1992, pp. 157–171. MR 1243023

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 30D05, 30D45, 37F10

Retrieve articles in all journals with MSC (2000): 30D05, 30D45, 37F10


Additional Information

Detlef Bargmann
Affiliation: Mathematisches Seminar, Christian–Albrechts–Universität zu Kiel, Ludewig–Meyn–Str. 4, D–24098 Kiel, Germany
Email: bargmann@math.uni-kiel.de

Walter Bergweiler
Affiliation: Mathematisches Seminar, Christian–Albrechts–Universität zu Kiel, Ludewig–Meyn–Str. 4, D–24098 Kiel, Germany
Email: bergweiler@math.uni-kiel.de

DOI: http://dx.doi.org/10.1090/S0002-9939-01-05864-6
Received by editor(s): September 13, 1999
Received by editor(s) in revised form: January 31, 2000
Published electronically: February 9, 2001
Communicated by: Albert Baernstein II
Article copyright: © Copyright 2001 American Mathematical Society