Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Some descriptive set-theoretic properties of the isomorphism relation between Banach spaces


Author: Andrzej Komisarski
Journal: Proc. Amer. Math. Soc. 129 (2001), 3085-3090
MSC (2000): Primary 03E15; Secondary 46B03
Published electronically: April 2, 2001
MathSciNet review: 1840115
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract:

Consider the space $\mathcal{V} (E)$ of closed linear subspaces of a separable Banach space $E$equipped with the standard Effros Borel structure. The isomorphism relation between Banach spaces being elements of  $\mathcal{V}(E)$ determines a partition of  $\mathcal{V}(E)$. In this note we prove a result describing the complexity of analytic subsets of  $\mathcal{V}(E)$ intersecting a large enough number of the above-mentioned parts of  $\mathcal{V}(E)$.


References [Enhancements On Off] (What's this?)

  • [B-Pe] C. Bessaga and A. Pełczyński, Spaces of continuous functions. IV. On isomorphical classification of spaces of continuous functions, Studia Math. 19 (1960), 53–62. MR 0113132
  • [Bo] Benoît Bossard, Codages des espaces de Banach séparables. Familles analytiques ou coanalytiques d’espaces de Banach, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), no. 10, 1005–1010 (French, with English and French summaries). MR 1222962
  • [CGP] J. Chaber, G. Gruenhage, and R. Pol, On a perfect set theorem of A. H. Stone and N. N. Lusin’s constituents, Fund. Math. 148 (1995), no. 3, 309–318. MR 1367597
  • [Ch-P] J. Chaber, R. Pol, On the Cantor-Bendixson derivative, resolvable ranks and perfect set theorems of A. H. Stone, Israel J. Math. 110 (1999), 103-123. CMP 2000:11
  • [Chr] J. P. R. Christensen, Topology and Borel structure, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1974. Descriptive topology and set theory with applications to functional analysis and measure theory; North-Holland Mathematics Studies, Vol. 10. (Notas de Matemática, No. 51). MR 0348724
  • [Ka] V. G. Kanovei, On uncountable sequences of sets determined by sieve operations, Dokl. Akad. Nauk SSSR 257 (1981), 808-812.
  • [Ke] Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597
  • [Ku] K. Kuratowski, Topology. Vol. I, New edition, revised and augmented. Translated from the French by J. Jaworowski, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe, Warsaw, 1966. MR 0217751
  • [K-M] Kazimierz Kuratowski and Andrzej Mostowski, Set theory, Second, completely revised edition, North-Holland Publishing Co., Amsterdam-New York-Oxford; PWN—Polish Scientific Publishers, Warsaw, 1976. With an introduction to descriptive set theory; Translated from the 1966 Polish original; Studies in Logic and the Foundations of Mathematics, Vol. 86. MR 0485384
  • [L-T] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces, Springer-Verlag, Berlin, 1996.
  • [Se] Zbigniew Semadeni, Banach spaces of continuous functions. Vol. I, PWN—Polish Scientific Publishers, Warsaw, 1971. Monografie Matematyczne, Tom 55. MR 0296671

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 03E15, 46B03

Retrieve articles in all journals with MSC (2000): 03E15, 46B03


Additional Information

Andrzej Komisarski
Affiliation: Department of Mathematics, Warsaw University, ul. Banacha 2, 02-097 Warsaw, Poland
Email: andkom@mimuw.edu.pl

DOI: http://dx.doi.org/10.1090/S0002-9939-01-05925-1
Received by editor(s): July 28, 1999
Received by editor(s) in revised form: March 5, 2000
Published electronically: April 2, 2001
Communicated by: Alan Dow
Article copyright: © Copyright 2001 American Mathematical Society