Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



An operator inequality related to Jensen's inequality

Author: Mitsuru Uchiyama
Journal: Proc. Amer. Math. Soc. 129 (2001), 3339-3344
MSC (2000): Primary 47A63, 15A48
Published electronically: April 9, 2001
MathSciNet review: 1845011
Full-text PDF

Abstract | References | Similar Articles | Additional Information


For bounded non-negative operators $A$ and $B$, Furuta showed

\begin{displaymath}0\leq A \leq B {\rm implies } A^{\frac{r}{2}}B^sA^{\frac{r}{2... ... A^{\frac{r}{2}})^{\frac{s+r}{t+r}} (0\leq r, 0\leq s \leq t).\end{displaymath}

We will extend this as follows: $0\leq A\leq B \underset{\lambda}{!}C $ $(0<\lambda <1)$ implies

\begin{displaymath}A^{\frac{r}{2}}(\lambda B^s+ (1-\lambda)C^s)A^{\frac{r}{2}} \... ...bda B^t+ (1- \lambda)C^t) A^{\frac{r}{2}}\}^{\frac{s+r}{t+r}} ,\end{displaymath}

where $B \underset{\lambda}{!}C$ is a harmonic mean of $B$ and $C$. The idea of the proof comes from Jensen's inequality for an operator convex function by Hansen-Pedersen.

References [Enhancements On Off] (What's this?)

  • 1. W. N. Anderson, G. E. Trapp, Shorted operators II, SIAM J. Appl. Math. 28(1975), 60-71.
  • 2. R. Bhatia, Matrix Analysis, Springer, 1996. MR 50:9417
  • 3. M. Fujii, T. Furuta, E. Kamei, Furuta's inequality and its application to Ando's theorem, Linear Alg. Appl. 179(1993), 161-169. MR 93j:47026
  • 4. T. Furuta, $A\geq B\geq 0$ assures $(B^rA^pB^r)^{1/q}$ for $r\geq 0,p \geq 0, q\geq 1$ with $(1+2r)q\geq p+2r$, Proc. Amer. Math. Soc. 101(1987), 85-88. MR 89b:47028
  • 5. T. Furuta, Two operator functions with monotone property, Proc. Amer. Math. Soc. 111(1991), 511-516. MR 91f:47023
  • 6. F. Hansen, G. K. Pedersen, Jensen's Inequality for Operators and Löwner's Theorem, Math. Ann. 258(1982), 229-241. MR 83g:47020
  • 7. F. Kubo, T. Ando, Means of positive linear operators, Math. Ann. 246(1980), 205-224. MR 84d:47028
  • 8. K. Tanahashi, Best possibility of Furuta inequality, Proc. Amer. Math. Soc. 124(1996), 141-146. MR 96d:47025
  • 9. M. Uchiyama, Some exponential operator inequalities, Math. Inequal. Appl. 2(1999), 469-471. MR 2000c:47036
  • 10. M. Uchiyama, Strong monotonicity of operator functions, Integr. Equ. Oper. Theory 37(1) (2000), 95-105. CMP 2000:14

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47A63, 15A48

Retrieve articles in all journals with MSC (2000): 47A63, 15A48

Additional Information

Mitsuru Uchiyama
Affiliation: Department of Mathematics, Fukuoka University of Education, Munakata, Fukuoka, 811-4192, Japan

Keywords: Order of selfadjoint operators, Jensen inequality, Furuta inequality
Received by editor(s): March 21, 2000
Published electronically: April 9, 2001
Communicated by: Joseph A. Ball
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society