Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Commutator conditions implying the convergence of the Lie-Trotter products


Authors: Franziska Kühnemund and Markus Wacker
Journal: Proc. Amer. Math. Soc. 129 (2001), 3569-3582
MSC (2000): Primary 34G10, 35K15, 47D06
DOI: https://doi.org/10.1090/S0002-9939-01-06034-8
Published electronically: April 25, 2001
MathSciNet review: 1860489
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

In this paper we investigate commutator conditions for two strongly continuous semigroups ${(T(t))_{t\geq 0}\,}$ and ${(S(t))_{t\geq 0}\,}$on a Banach space implying the convergence of the Lie-Trotter products $[T(\tfrac{t}{n})S(\tfrac{t}{n})]^n$. The results are then applied to various examples and, in particular, to the Ornstein-Uhlenbeck operator.


References [Enhancements On Off] (What's this?)

  • 1. J. Bass, Cours de mathématiques. Tome I $4^{e}$ ed. Paris, Masson et C$\,^{ie}$, Éditeurs, 1968. MR 37:1
  • 2. E. Barucci, S. Polidoro, V. Vespri, Some results on partial differential equations and Asian options, to appear.
  • 3. P. Cannarsa, G. Da Prato, On a functional approach to parabolic equations in infinite dimensions, J. Funct. Anal. 118(1) (1993), 22-42. MR 95a:35149
  • 4. P. R. Chernoff, Product formulas, nonlinear semigroups, and addition of unbounded operators, Mem. Amer. Math. Soc. 140 (1974), 1-121. MR 54:5899
  • 5. G. Da Prato, A. Lunardi, On the Ornstein-Uhlenbeck operator in spaces of continuous fuctions, J. Funct. Anal. 131 (1995), 94-114. MR 97m:47056
  • 6. K.-J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics 194, Springer-Verlag, 2000. MR 2000i:47075
  • 7. P. E. T. Jørgensen, R. T. Moore, Operator Commutation Relations, Mathematics and its Application, D. Reidel Publishing Company, 1984. MR 86i:22006
  • 8. F. Kühnemund and M. Wacker, The Lie-Trotter product formula does not hold for arbitrary sums of generators, to appear in Semigroup Forum.
  • 9. S. Monniaux and J. Prüss, A theorem of the Dore-Venni type for noncommuting operators, Trans. Amer. Math. Soc. 349(12) 1997, 4787-4814. MR 98b:47005
  • 10. M. Reed, B. Simon, Methods of Modern Mathematical Physics I. Functional Analysis, Academic Press, New York, 1972. MR 58:12429a
  • 11. W. Rudin, Functional Analysis, McGraw-Hill Book Company, 1973. MR 51:1315
  • 12. H. Suzuki, On the commutation relation $AB-BA=C$, Proc. Japan Acad. 47 (1971), 173-176. MR 45:966
  • 13. H. F. Trotter, On the product of semi-groups of operators, Proc. Amer. Math. Soc. 10 (1959), 545-551. MR 21:7446
  • 14. K. Yosida, Functional Analysis, Springer Verlag, 1974. MR 50:2851

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 34G10, 35K15, 47D06

Retrieve articles in all journals with MSC (2000): 34G10, 35K15, 47D06


Additional Information

Franziska Kühnemund
Affiliation: Mathematisches Institut, Auf der Morgenstelle 10, D-72076 Tübingen, Germany
Email: frku@michelangelo.mathematik.uni-tuebingen.de

Markus Wacker
Affiliation: Mathematisches Institut, Auf der Morgenstelle 10, D-72076 Tübingen, Germany
Email: mawa@michelangelo.mathematik.uni-tuebingen.de

DOI: https://doi.org/10.1090/S0002-9939-01-06034-8
Keywords: Strongly continuous semigroups, Trotter--Lie product formula, commutator conditions, Weyl relation, Ornstein--Uhlenbeck semigroup
Received by editor(s): December 16, 1999
Received by editor(s) in revised form: April 14, 2000
Published electronically: April 25, 2001
Additional Notes: The authors thank Giorgio Metafune, Rainer Nagel, Abdelaziz Rhandi and Roland Schnaubelt for helpful discussions.
Communicated by: David R. Larson
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society