A homomorphism of Harish-Chandra and direct images of -modules

Authors:
Markus Hunziker and Gerald W. Schwarz

Journal:
Proc. Amer. Math. Soc. **129** (2001), 3485-3493

MSC (2000):
Primary 13N10, 32C38, 22E46

DOI:
https://doi.org/10.1090/S0002-9939-01-06085-3

Published electronically:
May 3, 2001

MathSciNet review:
1860480

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Harish-Chandra defined a homomorphism of algebras of invariant polynomial differential operators. The construction and existence of are somewhat mysterious. We show how naturally arises when one considers matters in the context of -modules.

**1.**A. Borel et al.,*Algebraic D-modules*, Perspect. Math., vol. 2, Academic Press, Boston, 1987. MR**89g:32014****2.**N. Chriss, V. Ginzburg,*Representation Theory and Complex Geometry*, Birkhäuser, Boston, 1997. MR**98i:22021****3.**S. Evens,*On Springer representations and the Zuckerman functor*, Pacific J. Math.**180**(1997), 221-228. MR**98k:22055****4.**Harish-Chandra,*Differential operators on a semisimple Lie algebra*, Amer. J. Math.**79**(1957), 87-120. MR**18:809d****5.**-,*Invariant differential operators and distributions on a semisimple Lie algebra*, Amer. J. Math.**86**(1964), 534-564. MR**31:4862a****6.**R. Hotta,*Introduction to**-modules*, I.M.Sc. Lecture Notes Mathematics, Madras, India, 1987.**7.**R. Hotta, M. Kashiwara,*The invariant holonomic system on a reductive Lie algebra*, Invent. Math.**75**(1984), 327-358. MR**87i:22041****8.**M. Hunziker, N. R. Wallach,*On the Harish-Chandra homomorphism of invariant differential operators on a reductive Lie algebra*, Representation Theory and Harmonic Analysis, Contemporary Math. 191, Amer. Math. Soc., Providence, 1995, pp. 223-244. MR**96i:22032****9.**T. Levasseur, J. T. Stafford,*Invariant differential operators and an homomorphism of Harish-Chandra*, J. Amer. Math. Soc.**8**(1995), 365-372. MR**95g:22029****10.**-,*The kernel of an homomorphism of Harish-Chandra*, Ann. Sci. Ecole Norm. Sup.(4)**29**(1996), 385-397. MR**97b:22019****11.**G. W. Schwarz,*Lifting differential operators from orbit spaces*, Ann. Sci. Ecole Norm. Sup.**28**(1995), 253-306. MR**96f:14061****12.**-,*On a homomorphism of Harish-Chandra*, Algebraic Groups and Lie Groups; a Volume in Honor of R. W. Richardson, Australian Math. Soc. Lecture Series, vol. 9, 1997. MR**99g:22015****13.**N. R. Wallach,*Invariant differential operators on a reductive Lie algebra and Weyl group representations*, J. Amer. Math. Soc.**6**(1993), 779-816. MR**94a:17014**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
13N10,
32C38,
22E46

Retrieve articles in all journals with MSC (2000): 13N10, 32C38, 22E46

Additional Information

**Markus Hunziker**

Affiliation:
Department of Mathematics, Brandeis University, Waltham, Massachusetts 02254-9110

Address at time of publication:
Department of Mathematics, University of Georgia, Athens, Georgia 30602-7403

Email:
hunziker@brandeis.edu, hunziker@math.uga.edu

**Gerald W. Schwarz**

Affiliation:
Department of Mathematics, Brandeis University, Waltham, Massachusetts 02254-9110

Email:
schwarz@brandeis.edu

DOI:
https://doi.org/10.1090/S0002-9939-01-06085-3

Received by editor(s):
May 1, 2000

Published electronically:
May 3, 2001

Additional Notes:
The second author was partially supported by the NSF

Communicated by:
Rebecca Herb

Article copyright:
© Copyright 2001
American Mathematical Society