On perfectly meager sets in the transitive sense

Author:
Tomasz Weiss

Journal:
Proc. Amer. Math. Soc. **130** (2002), 591-594

MSC (2000):
Primary 03E15, 03E20, 28E15

Published electronically:
July 25, 2001

MathSciNet review:
1862142

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

We prove that assuming one can always find a perfectly meager set, which is not perfectly meager in the transitive sense.

**[B]**Bartoszynski, T.:*On perfectly meager sets*, preprint, 2000.**[vD]**van Douwen E.:*The integers and Topology*, in Handbook of set-theoretic topology (K. Kunen and J.E. Vaughan, eds.), Elsevier Science Publishers, B.V., 1984, 116-167.**[G]**Grzegorek, E.:*Always of the first category sets*, Rend. Circ. Mat. Palermo, II. Ser. Suppl. 6(1984), 139-147.**[GM]**Fred Galvin and Arnold W. Miller,*𝛾-sets and other singular sets of real numbers*, Topology Appl.**17**(1984), no. 2, 145–155. MR**738943**, 10.1016/0166-8641(84)90038-5**[JMSS]**Winfried Just, Arnold W. Miller, Marion Scheepers, and Paul J. Szeptycki,*The combinatorics of open covers. II*, Topology Appl.**73**(1996), no. 3, 241–266. MR**1419798**, 10.1016/S0166-8641(96)00075-2**[M]**Arnold W. Miller,*Special subsets of the real line*, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 201–233. MR**776624****[N]**Nowik, A.:*Remarks about transitive version of perfectly meager sets*, Real Analysis Exchange, Volume 22(1), 1996/7, 406-412.**[NSW]**Andrej Nowik, Marion Scheepers, and Tomasz Weiss,*The algebraic sum of sets of real numbers with strong measure zero sets*, J. Symbolic Logic**63**(1998), no. 1, 301–324. MR**1610427**, 10.2307/2586602**[NW1]**Andrzej Nowik and Tomasz Weiss,*Not every 𝑄-set is perfectly meager in the transitive sense*, Proc. Amer. Math. Soc.**128**(2000), no. 10, 3017–3024. MR**1664434**, 10.1090/S0002-9939-00-05355-7**[NW2]**Nowik, A. and Weiss, T.:*The algebraic sum of a strong measure zero set and a perfectly meager set revisited*, East-West Journal of Mathematics, Volume 2, Number 2, 2000, 191-194. CMP**2001:11****[R]**Ireneusz Recław,*Some additive properties of special sets of reals*, Colloq. Math.**62**(1991), no. 2, 221–226. MR**1142923****[S]**Marion Scheepers,*Additive properties of sets of real numbers and an infinite game*, Quaestiones Math.**16**(1993), no. 2, 177–191. MR**1234464**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
03E15,
03E20,
28E15

Retrieve articles in all journals with MSC (2000): 03E15, 03E20, 28E15

Additional Information

**Tomasz Weiss**

Affiliation:
WSRP, 08-110 Siedlce, Poland

Email:
weiss@wsrp.siedlce.pl

DOI:
https://doi.org/10.1090/S0002-9939-01-06073-7

Received by editor(s):
December 13, 1999

Received by editor(s) in revised form:
June 27, 2000

Published electronically:
July 25, 2001

Communicated by:
Carl G. Jockush, Jr.

Article copyright:
© Copyright 2001
American Mathematical Society