Solutions to a class of Schrödinger equations

Author:
Yanheng Ding

Journal:
Proc. Amer. Math. Soc. **130** (2002), 689-696

MSC (1991):
Primary 35Q55; Secondary 58E55

DOI:
https://doi.org/10.1090/S0002-9939-01-06225-6

Published electronically:
July 25, 2001

MathSciNet review:
1866021

Full-text PDF

Abstract | References | Similar Articles | Additional Information

We establish existence and multiplicity of solutions to a class of nonlinear Schrödinger equations with, e.g., ``atomic'' Hamiltonians, via critical point theory.

**[1]**S. Alama and Y. Y. Li,*On ``Multibump'' bound states for certain semilinear elliptic equations*, Indiana J. Math.**44**(1992), 983-1026. MR**94d:35044****[2]**S. Alama and G. Tarantello,*On the solvability of a semilinear elliptic equation via an associated eigenvalue problem*, Math. Z.**221**(1996), 467-493. MR**97d:35067****[3]**A. Ambrosetti, M. Badiale and S. Cingolani,*Semiclassical states of nonlinear Schrödinger equations*, Arch. Rat. Mech. Anal.**140**(1997), 285-300. MR**98k:35172****[4]**T. Bartsch and Y. H. Ding,*On a nonlinear Schrödinger equation with periodic potential*, Math. Ann.**313**(1999), 15-37. MR**99m:35218****[5]**R. Benguria, H. Brézis and E. H. Lieb,*The Thomas-Fermi-von Weizäcker theory of atoms and molecules*, Comm. Math. Phys.**79**(1981), 167-180. MR**83m:81114****[6]**V. Coti-Zelati and P. H. Rabinowitz,*Homoclinic type solutions for a semilinear elliptic PDE on*, Comm. Pure Appl. Math.**45**(1992), 1217-1269. MR**93k:35087****[7]**M. A. Del Pino and P. Felmer,*Multiple solutions for a semilinear elliptic equation*, Trans. Amer. Math. Soc.**347**(1995), 4839-4853. MR**96c:35062****[8]**W. Kryszewski and A. Szulkin,*Generalized linking theorem with an application to semilinear Schrödinger equation*, Adv. Diff. Eq.**3**(1998), 441-472. CMP**2000:11****[9]**S.J. Li and M. Willem,*Applications of local linking to critical point theory*, J. Math. Anal. Appl.**189**(1995), 6-32. MR**96a:58045****[10]**P. L. Lions,*Solutions of Hartree-Fock equations for Coulomb systems*, Comm. Math. Phys.**109**(1987), 33-97. MR**88e:35170****[11]**P.H. Rabinowitz,*Minimax Methods in Critical Point Theory with Applications to Differential Equations*, C. B. M. S. 65, Amer. Math. Soc., Providence, R. I., 1986. MR**87j:58024****[12]**P. H. Rabinowitz,*On a class of nonlinear Schrödinger equations*, ZAMP**43**(1992), 270-291. MR**93h:35194****[13]**M. Reed and B. Simon,*Methods of Mathematical Physics,*vol. I-IV, Academic Press, 1978. MR**58:12429a**; MR**58:12429b**; MR**80m:81085**; MR**58:12429c****[14]**C. Troestler and M. Willem,*Nontrivial solution of a semilinear Schrödinger equation*, Comm. Partial Diff. Eq.**21**(1996), 1431-1449. MR**98i:35034****[15]**M. Willem,*Minimax Methods*, Birkhäuser, Boston, 1996.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
35Q55,
58E55

Retrieve articles in all journals with MSC (1991): 35Q55, 58E55

Additional Information

**Yanheng Ding**

Affiliation:
Morningside Center of Mathematics and Institute of Mathematics, AMSS, Chinese Academy of Sciences, 100080 Beijing, People’s Republic of China

Email:
dingyh@math03.math.ac.cn

DOI:
https://doi.org/10.1090/S0002-9939-01-06225-6

Keywords:
Schr\"{o}dinger equations,
multiple solutions,
critical point theory

Received by editor(s):
August 15, 2000

Published electronically:
July 25, 2001

Additional Notes:
This research was supported by the Special Funds for Major State Basic Research Projects of China.

Communicated by:
David S. Tartakoff

Article copyright:
© Copyright 2001
American Mathematical Society