Immersions of surfaces in almost-complex 4-manifolds

Author:
Christian Bohr

Journal:
Proc. Amer. Math. Soc. **130** (2002), 1523-1532

MSC (1991):
Primary 57M99, 53C15

Published electronically:
October 5, 2001

MathSciNet review:
1879979

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we investigate the relation between double points and complex points of immersed surfaces in almost-complex 4-manifolds and show how estimates for the minimal genus of embedded surfaces lead to inequalities between the number of double points and the number of complex points of an immersion.

**[BPV]**W. Barth, C. Peters, and A. Van de Ven,*Compact complex surfaces*, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 4, Springer-Verlag, Berlin, 1984. MR**749574****[B1]**Christian Bohr,*Embedded surfaces and almost complex structures*, Proc. Amer. Math. Soc.**128**(2000), no. 7, 2147–2154. MR**1657766**, 10.1090/S0002-9939-99-05277-6**[B2]**C. Bohr,*Embedded surfaces and the intersection forms of non-simply connected 4-manifolds*, Ph.D. thesis, University of Munich (2000).**[CG]**M. Chkhenkeli, T. Garrity,*Intersection form and CR geometry for four-manifolds: the Kirby-Lai adjunction formula*, Preprint, math.DG/9904007.**[FS]**Ronald Fintushel and Ronald J. Stern,*Immersed spheres in 4-manifolds and the immersed Thom conjecture*, Turkish J. Math.**19**(1995), no. 2, 145–157. MR**1349567****[Gi]**Patrick M. Gilmer,*Configurations of surfaces in 4-manifolds*, Trans. Amer. Math. Soc.**264**(1981), no. 2, 353–380. MR**603768**, 10.1090/S0002-9947-1981-0603768-7**[KeM]**Michel A. Kervaire and John W. Milnor,*On 2-spheres in 4-manifolds*, Proc. Nat. Acad. Sci. U.S.A.**47**(1961), 1651–1657. MR**0133134****[KM]**P. B. Kronheimer and T. S. Mrowka,*The genus of embedded surfaces in the projective plane*, Math. Res. Lett.**1**(1994), no. 6, 797–808. MR**1306022**, 10.4310/MRL.1994.v1.n6.a14**[Lai]**Hon Fei Lai,*Characteristic classes of real manifolds immersed in complex manifolds*, Trans. Amer. Math. Soc.**172**(1972), 1–33. MR**0314066**, 10.1090/S0002-9947-1972-0314066-8**[La]**Terry Lawson,*The minimal genus problem*, Exposition. Math.**15**(1997), no. 5, 385–431. MR**1486407****[LL]**T. J. Li and A. Liu,*Symplectic structure on ruled surfaces and a generalized adjunction formula*, Math. Res. Lett.**2**(1995), no. 4, 453–471. MR**1355707**, 10.4310/MRL.1995.v2.n4.a6**[Ro]**V.A. Rokhlin,*Two-dimensional submanifolds of four-dimensional manifolds*, Funct. Anal. Appl.**5**(1971), p. 39-48.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
57M99,
53C15

Retrieve articles in all journals with MSC (1991): 57M99, 53C15

Additional Information

**Christian Bohr**

Affiliation:
Department of Mathematics, Yale University, P.O. Box 208283, New Haven, Connecticut 06520–8283

Address at time of publication:
Mathematisches Institut, Theresienstrasse 39, 80333 Muenchen, Germany

Email:
bohr@math.yale.edu, bohr@rz.mathematik.uni-muenchen.de

DOI:
https://doi.org/10.1090/S0002-9939-01-06185-8

Received by editor(s):
September 8, 2000

Received by editor(s) in revised form:
November 1, 2000

Published electronically:
October 5, 2001

Additional Notes:
The author was supported by the Graduiertenkolleg “Mathematik im Bereich ihrer Wechselwirkung mit der Physik” at the University of Munich

Communicated by:
Ronald A. Fintushel

Article copyright:
© Copyright 2001
American Mathematical Society