Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Linearity of dimension functions for semilinear $G$-spheres


Author: Ikumitsu Nagasaki
Journal: Proc. Amer. Math. Soc. 130 (2002), 1843-1850
MSC (2000): Primary 57S25; Secondary 57S15, 57S17
DOI: https://doi.org/10.1090/S0002-9939-02-06512-7
Published electronically: January 25, 2002
MathSciNet review: 1887033
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we show that the dimension function of every semilinear $G$-sphere is equal to that of a linear $G$-sphere for finite nilpotent groups $G$ of order $p^nq^m$, where $p$, $q$are primes. We also show that there exists a semilinear $G$-sphere whose dimension function is not virtually linear for an arbitrary nonsolvable compact Lie group $G$.


References [Enhancements On Off] (What's this?)

  • 1. S. Bauer, Dimension functions of homotopy representations for compact Lie groups, Math. Ann. 280 (1988), 247-265. MR 89e:57030
  • 2. -, A linearity theorem for group actions on spheres with applications to homotopy representations, Comment. Math. Helv. 64 (1989), 167-172. MR 90e:57067
  • 3. T. tom Dieck, Homotopy equivalent group representations, J. Reine Angew. Math. 298 (1978), 182-195. MR 58:18498
  • 4. -, Homotopiedarstellungen endlich Gruppen: Dimensionsfunktionen, Invent. Math. 67 (1982), 231-252. MR 84b:57029
  • 5. -, Transformation groups, Walter de Gruyter, Berlin, New York, 1987. MR 89c:57048
  • 6. T. tom Dieck and T. Petrie, Homotopy representations of finite groups, Inst. Hautes Etudes Sci. Publ. Math. 56 (1982), 129-169. MR 86b:57020
  • 7. R. M. Dotzel and G. C. Hamrick, $p$-group actions on homology spheres, Invent. Math. 62 (1981), 437-442. MR 82j:57037
  • 8. D. Gorenstein, Finite groups, Harper & Row, New York, Evanston and London, 1968. MR 38:229
  • 9. K. Kawakubo, Equivariant homotopy equivalence of group representations, J. Math. Soc. Japan 32 (1980), 105-118. MR 82a:57034
  • 10. E. Laitinen, Unstable homotopy theory of homotopy representations, Lecture Notes in Math. 1217 (1985), 210-248. MR 88i:57013
  • 11. E. Laitinen and M. Raussen, Homotopy types of locally linear representation forms, Manuscripta Math. 88 (1995), 33-52. MR 97g:57056
  • 12. C. N. Lee and A. G. Wasserman, On the group $JO(G)$, Mem. Amer. Math. Soc. 159 (1975). MR 51:6808
  • 13. C. Mackrodt, Representation forms for metacyclic groups, Manuscripta Math. 73 (1991), 261-287. MR 93c:57032
  • 14. I. Madsen and M. Raussen, Locally linear representation forms, Osaka J. Math. 27 (1990), 567-591. MR 92k:57067
  • 15. D. Montgomery and C. T. Yang, Differentiable pseudo-free circle actions on homotopy seven spheres, Second conference of compact transformation groups, Lecture Notes in Math. 298 (1972), 41-101. MR 50:14825
  • 16. I. Nagasaki, Homotopy representations and spheres of representations, Osaka J. Math. 24 (1985), 895-905. MR 87d:57031
  • 17. -, Linearity of homotopy representations II, Manuscripta Math. 82 (1994), 277-292. MR 94m:57071
  • 18. -, Unstable $jO$-groups and stably linear homotopy representations for $p$-groups, Osaka J. Math. 36 (1999), 1-16. MR 99m:57033
  • 19. R. Oliver, Smooth compact Lie group actions on disks, Math. Z. 149 (1976), 71-96. MR 54:11369
  • 20. P. Traczyk, On the $G$-homotopy equivalence of spheres of representations, Math. Z. 161 (1978), 257-261. MR 58:13025

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 57S25, 57S15, 57S17

Retrieve articles in all journals with MSC (2000): 57S25, 57S15, 57S17


Additional Information

Ikumitsu Nagasaki
Affiliation: Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka 560-0043, Osaka, Japan
Email: nagasaki@math.sci.osaka-u.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-02-06512-7
Keywords: Dimension function, semilinear $G$-sphere, homotopy representation
Received by editor(s): March 20, 2000
Published electronically: January 25, 2002
Additional Notes: This work was partially supported by Grant-in-Aid for Scientific Research
Dedicated: Dedicated to the memory of Professor Katsuo Kawakubo
Communicated by: Ralph Cohen
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society