Hyperbolic hypersurfaces in of FermatWaring type
Authors:
Bernard Shiffman and Mikhail Zaidenberg
Journal:
Proc. Amer. Math. Soc. 130 (2002), 20312035
MSC (2000):
Primary 32Q45, 32H25; Secondary 14J70
Published electronically:
December 27, 2001
MathSciNet review:
1896038
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In this note we show that there are algebraic families of hyperbolic, FermatWaring type hypersurfaces in of degree , for all dimensions . Moreover, there are hyperbolic FermatWaring hypersurfaces in of degree possessing complete hyperbolic, hyperbolically embedded complements.
 [Br]
Robert
Brody, Compact manifolds and
hyperbolicity, Trans. Amer. Math. Soc. 235 (1978), 213–219.
MR
0470252 (57 #10010), http://dx.doi.org/10.1090/S00029947197804702523
 [DeEl]
JeanPierre
Demailly and Jawher
El Goul, Hyperbolicity of generic surfaces of high degree in
projective 3space, Amer. J. Math. 122 (2000),
no. 3, 515–546. MR 1759887
(2001f:32045)
 [Fu1]
Hirotaka
Fujimoto, On meromorphic maps into the complex projecive
space, J. Math. Soc. Japan 26 (1974), 272–288.
MR
0346198 (49 #10924)
 [Fu2]
Fujimoto H. A family of hyperbolic hypersurfaces in the complex projective space. Complex Variables Theory Appl. 43 (2001), 273283. CMP 2001:10
 [Gr]
Mark
Lee Green, Some Picard theorems for holomorphic maps to algebraic
varieties, Amer. J. Math. 97 (1975), 43–75. MR 0367302
(51 #3544)
 [Kh]
Ha
Huy Khoai, Hyperbolic surfaces in
𝑃³(𝐶), Proc. Amer. Math.
Soc. 125 (1997), no. 12, 3527–3532. MR 1443160
(98e:32046), http://dx.doi.org/10.1090/S0002993997042007
 [MaNo]
Kazuo
Masuda and Junjiro
Noguchi, A construction of hyperbolic hypersurface of
𝑃ⁿ(𝐶), Math. Ann. 304 (1996),
no. 2, 339–362. MR 1371771
(97a:32025), http://dx.doi.org/10.1007/BF01446298
 [Mc]
M.
McQuillan, Holomorphic curves on hyperplane sections of
3folds, Geom. Funct. Anal. 9 (1999), no. 2,
370–392. MR 1692470
(2000f:32035), http://dx.doi.org/10.1007/s000390050091
 [Pa]
Pacienza G. Rational curves on general projective hypersurfaces. Eprint, math.AG/0010037, Oct. 2000, 21pp.
 [ShZa]
Shiffman B., Zaidenberg M. Two classes of hyperbolic surfaces in . International J. Math. 11 (2000), 65101. CMP 2000:12
 [Shr1]
Manabu
Shirosaki, Hyperbolic hypersurfaces in the complex projective
spaces of low dimensions, Kodai Math. J. 23 (2000),
no. 2, 224–233. MR 1768182
(2001e:32038), http://dx.doi.org/10.2996/kmj/1138044212
 [Shr2]
Manabu
Shirosaki, A hyperbolic hypersurface of degree 10, Kodai Math.
J. 23 (2000), no. 3, 376–379. MR 1787671
(2001i:32041), http://dx.doi.org/10.2996/kmj/1138044265
 [SiYe]
YumTong
Siu and SaiKee
Yeung, Defects for ample divisors of abelian varieties, Schwarz
lemma, and hyperbolic hypersurfaces of low degrees, Amer. J. Math.
119 (1997), no. 5, 1139–1172. MR 1473072
(98h:32044)
 [To]
Nobushige
Toda, On the functional equation
∑^{𝑝}ᵢ₌₀𝑎ᵢ𝑓ᵢ^{𝑛𝑖}=1,
Tôhoku Math. J. (2) 23 (1971), 289–299. MR 0291460
(45 #551)
 [Za1]
M.
G. Zaĭdenberg, The complement to a general hypersurface of
degree 2𝑛 in 𝐶𝑃ⁿ is not hyperbolic,
Sibirsk. Mat. Zh. 28 (1987), no. 3, 91–100, 222
(Russian). MR
904640 (88k:32063)
 [Za2]
M.
G. Zaĭdenberg, Stability of hyperbolic embeddedness and the
construction of examples, Mat. Sb. (N.S.) 135(177)
(1988), no. 3, 361–372, 415 (Russian); English transl., Math.
USSRSb. 63 (1989), no. 2, 351–361. MR 937646
(89f:32047)
 [Za3]
Mikhail
Zaidenberg, Hyperbolicity in projective spaces,
Sūrikaisekikenkyūsho Kōkyūroku
819 (1993), 136–156. International Symposium
“Holomorphic Mappings, Diophantine Geometry and Related Topics”
(Kyoto, 1992). MR 1247074
(95a:32045)
 [Br]
 Brody R. Compact manifolds and hyperbolicity. Trans. Amer. Math. Soc. 235 (1978), 213219. MR 57:10010
 [DeEl]
 Demailly J.P., El Goul J. Hyperbolicity of generic surfaces of high degree in projective 3space. Amer. J. Math. 122 (2000), 515546. MR 2001f:32045
 [Fu1]
 Fujimoto H. On meromorphic maps into the complex projective space. J. Math. Soc. Japan 26 (1974), 272288. MR 49:10924
 [Fu2]
 Fujimoto H. A family of hyperbolic hypersurfaces in the complex projective space. Complex Variables Theory Appl. 43 (2001), 273283. CMP 2001:10
 [Gr]
 Green M. Some Picard theorems for holomorphic maps to algebraic varieties. Amer. J. Math. 97 (1975), 4375. MR 51:3544
 [Kh]
 Ha Huy Khoai. Hyperbolic surfaces in . Proc. Amer. Math. Soc. 125 (1997), 35273532. MR 98e:32046
 [MaNo]
 Masuda K., Noguchi J. A construction of hyperbolic hypersurface of . Math. Ann. 304 (1996), 339362. MR 97a:32025
 [Mc]
 McQuillan M. Holomorphic curves on hyperplane sections of 3folds. Geom. Funct. Anal. 9 (1999), 370392. MR 2000f:32035
 [Pa]
 Pacienza G. Rational curves on general projective hypersurfaces. Eprint, math.AG/0010037, Oct. 2000, 21pp.
 [ShZa]
 Shiffman B., Zaidenberg M. Two classes of hyperbolic surfaces in . International J. Math. 11 (2000), 65101. CMP 2000:12
 [Shr1]
 Shirosaki M. Hyperbolic hypersurfaces in the complex projective spaces of low dimensions. Kodai Math. J. 23 (2000), 224233. MR 2001e:32038
 [Shr2]
 Shirosaki M. A hyperbolic hypersurface of degree 10. Kodai Math. J. 23 (2000), 376379. MR 2001i:32041
 [SiYe]
 Siu Y.T., Yeung S.K. Defects for ample divisors of abelian varieties, Schwarz lemma, and hyperbolic hypersurfaces of low degrees. Amer. J. Math. 119 (1997), 11391172. MR 98h:32044
 [To]
 Toda N. On the functional equation . Tôhoku Math. J. (2) 23 (1971), 289299. MR 45:551
 [Za1]
 Zaidenberg M. The complement of a generic hypersurface of degree in is not hyperbolic. Siberian Math. J. 28 (1987), 425432. MR 88k:32063
 [Za2]
 Zaidenberg M. Stability of hyperbolic imbeddedness and construction of examples. Math. USSR Sbornik 63 (1989), 351361. MR 89f:32047
 [Za3]
 Zaidenberg M. Hyperbolicity in projective spaces. Proc. Conf. ``Diophantine Problemes, Hyperbolic Spaces and related topics", RIMS, Kyoto, Japan, 2631 October 1992; Tokyo, TIT, 1992, 136156. MR 95a:32045
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
32Q45,
32H25,
14J70
Retrieve articles in all journals
with MSC (2000):
32Q45,
32H25,
14J70
Additional Information
Bernard Shiffman
Affiliation:
Department of Mathematics, Johns Hopkins University, Baltimore, Maryland 21218
Email:
shiffman@math.jhu.edu
Mikhail Zaidenberg
Affiliation:
Université Grenoble I, Institut Fourier, UMR 5582 CNRSUJF, BP 74, 38402 St. Martin d’Hères cédex, France
Email:
zaidenbe@ujfgrenoble.fr
DOI:
http://dx.doi.org/10.1090/S0002993901064176
PII:
S 00029939(01)064176
Received by editor(s):
January 26, 2001
Published electronically:
December 27, 2001
Additional Notes:
Research of the first author partially supported by NSF grant #DMS9800479.
Communicated by:
Steven R. Bell
Article copyright:
© Copyright 2001
American Mathematical Society
