Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Sharp local isoperimetric inequalities involving the scalar curvature


Author: Olivier Druet
Journal: Proc. Amer. Math. Soc. 130 (2002), 2351-2361
MSC (2000): Primary 49J40, 53C21
Published electronically: March 12, 2002
MathSciNet review: 1897460
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We provide sharp local isoperimetric inequalities on Riemannian manifolds involving the scalar curvature, and thus answer a question asked by Johnson and Morgan.


References [Enhancements On Off] (What's this?)

  • 1. Thierry Aubin, Problèmes isopérimétriques et espaces de Sobolev, J. Differential Geometry 11 (1976), no. 4, 573–598 (French). MR 0448404
  • 2. Thierry Aubin and Yan Yan Li, On the best Sobolev inequality, J. Math. Pures Appl. (9) 78 (1999), no. 4, 353–387. MR 1696357, 10.1016/S0021-7824(99)00012-4
  • 3. Arnaud Beauville, Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983), no. 4, 755–782 (1984) (French). MR 730926
  • 4. Olivier Druet, Optimal Sobolev inequalities of arbitrary order on compact Riemannian manifolds, J. Funct. Anal. 159 (1998), no. 1, 217–242. MR 1654123, 10.1006/jfan.1998.3264
  • 5. Olivier Druet, The best constants problem in Sobolev inequalities, Math. Ann. 314 (1999), no. 2, 327–346. MR 1697448, 10.1007/s002080050297
  • 6. -, Isoperimetric inequalities on compact manifolds, Geometriae Dedicata (to appear).
  • 7. Lawrence C. Evans and Ronald F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. MR 1158660
  • 8. Emmanuel Hebey, Nonlinear analysis on manifolds: Sobolev spaces and inequalities, Courant Lecture Notes in Mathematics, vol. 5, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1999. MR 1688256
  • 9. -, Sharp Sobolev-Poincaré inequalities on compact Riemannian manifolds, Preprint (2000).
  • 10. D. Johnson and F. Morgan, Some sharp isoperimetric theorems for Riemannian manifolds, Indiana University Math. Journal 49, 3 (2000), 1017-1041.CMP 2001:06
  • 11. P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 2, 109–145 (English, with French summary). MR 778970
  • 12. P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana 1 (1985), no. 1, 145–201. MR 834360, 10.4171/RMI/6
  • 13. Frank Morgan, Geometric measure theory, 2nd ed., Academic Press, Inc., San Diego, CA, 1995. A beginner’s guide. MR 1326605
  • 14. Michael Struwe, Variational methods, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 34, Springer-Verlag, Berlin, 1996. Applications to nonlinear partial differential equations and Hamiltonian systems. MR 1411681
  • 15. Giorgio Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4) 110 (1976), 353–372. MR 0463908
  • 16. William P. Ziemer, Weakly differentiable functions, Graduate Texts in Mathematics, vol. 120, Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation. MR 1014685

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 49J40, 53C21

Retrieve articles in all journals with MSC (2000): 49J40, 53C21


Additional Information

Olivier Druet
Affiliation: Département de Mathématiques, Université de Cergy-Pontoise, Site de Saint-Martin, 2 avenue Adolphe Chauvin, 95302 Cergy-Pontoise cedex, France
Email: Olivier.Druet@math.u-cergy.fr

DOI: http://dx.doi.org/10.1090/S0002-9939-02-06355-4
Received by editor(s): March 15, 2001
Published electronically: March 12, 2002
Communicated by: Jozef Dodziuk
Article copyright: © Copyright 2002 American Mathematical Society