Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Operator weak amenability of the Fourier algebra


Author: Nico Spronk
Journal: Proc. Amer. Math. Soc. 130 (2002), 3609-3617
MSC (2000): Primary 46L07; Secondary 43A07
DOI: https://doi.org/10.1090/S0002-9939-02-06680-7
Published electronically: June 11, 2002
MathSciNet review: 1920041
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that for any locally compact group $G$, the Fourier algebra $\mathrm{A}(G)$is operator weakly amenable.


References [Enhancements On Off] (What's this?)

  • 1. G. Arsac, Sur l'espace de Banach engendré par les coefficients d'une représentation unitaire, Pub. Dép. Math. Lyon 13 (1976), no. 2, 1-101. MR 56:3180
  • 2. W. G. Bade, P. C. Curtis, and H. G. Dales, Amenability and weak amenability for Beurling and Lipschitz algebras, Proc. London Math. Soc. 55 (1987), no. 3, 359-377. MR 88f:46098
  • 3. D. P. Blecher, The standard dual of an operator space, Pacific Math. J. 153 (1992), no. 1, 15-30. MR 93d:47083
  • 4. D. P. Blecher and V. I. Paulsen, Tensor products of operator spaces, J. Funct. Anal. 99 (1991), 262-292. MR 93d:46095
  • 5. G. Brown and W. Moran, Point derivations on ${M(G)}$, Bull. London Math. Soc. 8 (1976), 57-64. MR 54:5744
  • 6. M. Despic and F. Ghahramani, Weak amenablility of group algebras of locally compact groups, Canad. Math. Bull. 37 (1994), no. 2, 165-167. MR 95c:43003
  • 7. E. G. Effros and Z.-J. Ruan, Operator convolution algebras: an approach to quantum groups, Unpublished.
  • 8. -, Operator spaces, London Math. Soc. Monographs, New Series, vol. 23, Oxford University Press, New York, 2000. MR 2002a:46082
  • 9. M. Enock and J.-M. Schwartz, Kac algebras and duality of locally compact groups, Springer, Berlin, 1992. MR 94e:46001
  • 10. P. Eymard, L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181-236. MR 37:4208
  • 11. B. E. Forrest, Amenability and weak amenability of the Fourier algbra, Preprint.
  • 12. B. E. Forrest and P. J. Wood, Cohomology and the operator space structure of the Fourier algebra and its second dual, Indiana Math. J. 50 (2001), 1217-1240.
  • 13. N. Groenbaek, A characterization of weakly amenable Banach algebras, Studia Math. 94 (1989), 149-162. MR 92a:46055
  • 14. C. S. Herz, Harmonic synthesis for subgroups, Ann. Inst. Fourier, Grenoble 23 (1973), no. 3, 91-123. MR 50:7956
  • 15. B. E. Johnson, Cohomology in banach algebras, Memoirs of the Amer. Math. Soc., vol. 127, 1972. MR 51:11130
  • 16. -, Weak amenability of group algebras, Bull. London Math. Soc. 23 (1991), 281-284. MR 92k:43004
  • 17. -, Non-amenability of the Fourier algebra of a compact group, J. London Math. Soc. 50 (1994), no. 2, 361-374. MR 95i:43001
  • 18. J. L. Kelley, General topology, Grad. texts in math., vol. 27, Springer, 1955. MR 16:1136c; MR 51:6681
  • 19. H. Leptin, Sur l'algèbre de Fourier d'un groupe localement compact, C. R. Acad. Sci. Paris, Sér. A-B 266 (1968), no. 1968, 1180-1182. MR 39:362
  • 20. V. Losert, On tensor products of the Fourier algebras, Arch. Math. 43 (1984), 370-372. MR 87c:43004
  • 21. T. W. Palmer, Classes of nonabelian, noncompact, locally compact groups, Rocky Mountain Math. J. 8 (1978), no. 4, 683-741. MR 81j:22003
  • 22. G. K. Pedersen, C*-algebras and their automorphism groups, Academic Press, New York, 1979. MR 81e:46037
  • 23. Z.-J. Ruan, The operator amenability of ${A(G)}$, Amer. J. Math. 117 (1995), 1449-1474. MR 96m:43001
  • 24. M. Takesaki and N. Tatsuuma, Duality and Subgroups, II, J. Funct. Anal. 11 (1972), 184-190. MR 52:5865

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46L07, 43A07

Retrieve articles in all journals with MSC (2000): 46L07, 43A07


Additional Information

Nico Spronk
Affiliation: Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
Email: nspronk@math.uwaterloo.ca

DOI: https://doi.org/10.1090/S0002-9939-02-06680-7
Keywords: Fourier algebra, operator space, weakly amenable Banach algebra
Received by editor(s): July 6, 2001
Published electronically: June 11, 2002
Additional Notes: This work was supported by an Ontario Graduate Scholarship.
Communicated by: David R. Larson
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society