Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Symmetric presentations of Abelian groups


Author: Miklós Abért
Journal: Proc. Amer. Math. Soc. 131 (2003), 17-20
MSC (2000): Primary 20F05, 20K01
DOI: https://doi.org/10.1090/S0002-9939-02-06490-0
Published electronically: June 12, 2002
MathSciNet review: 1929017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We characterise the abelianisation of a group that has a presentation for which the set of relations is invariant under the full symmetric group acting on the set of generators. This improves a result of Emerson.


References [Enhancements On Off] (What's this?)

  • [Bee] M.J. Beetham, A set of generators and relations for the group $PSL(2,q)$, $q$ odd, J. London Math. Soc. 3 (1971), 554-557. MR 44:2806
  • [BC] J.N. Bray, R.T. Curtis, A systematic approach to symmetric presentations II. Generators of order $3$, Math. Proc. Cambridge Philos. Soc. 128 (2000), 1-20. MR 2000k:20032
  • [CHLR] C. Campbell, G. Havas, S. Linton, E. Robertson, Symmetric presentations and orthogonal groups: The atlas of finite groups: ten years on (Birmingham, 1995), 1-10, London Math. Soc. Lecture Note Ser., 249, Cambridge Univ. Press, Cambridge, 1998. MR 99m:20112
  • [CR] C.M. Campbell and E.F. Robertson, Some problems in group presentations, J. Korean Math. Soc. 19 (1983), 123-128. MR 84j:20030
  • [CRW] C.M. Campbell, E.F. Robertson and P.D. Williams, Efficient presentations of the groups $PSL(2,p)\times PSL(2,p)$, $p$ prime, J. London Math. Soc. (2) 41 (1989), 69-77. MR 91g:20042
  • [Cox] H.S.M. Coxeter, Symmetrical definitions for the binary polyhedral groups, Proc. Sympos. Pure Math. 1 (1959), 64-87. MR 22:6850
  • [CM] H.S.M. Coxeter and W.O.J. Moser, Generators and relations for discrete groups, 4th edition (Springer, Berlin, 1979). MR 81a:20001
  • [Cu1] R.T. Curtis, Symmetric presentations. I. Introduction, with particular reference to the Mathieu groups $M_{12}$ and $ M_{24}$, Groups, combinatorics & geometry (London Math. Soc. Lecture Note Ser., 165, Cambridge Univ. Press, Cambridge, 1992), 380-396. MR 94b:20038
  • [Cu2] R.T. Curtis, Symmetric presentations. II. The Janko group $J_{1}$, J. London Math. Soc. (2) 47 (1993), 294-308. MR 94b:20039
  • [CHB] R.T. Curtis, A.M.A. Hammas, J.N. Bray, A systematic approach to symmetric presentations I. Involutory generators, Math. Proc. Cambridge Philos. Soc. 119 (1996), 23-34. MR 96k:20058
  • [Eme] W. Emerson, Groups defined by permutations of a single word, Proc. Amer. Math. Soc. 21 (1969), 386-390. MR 39:1530
  • [RC] E.F. Robertson and C.M. Campbell, Symmetric presentations, Group Theory (Walter de Gruyter, Berlin, New York, 1989), 497-506. MR 90a:20064

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 20F05, 20K01

Retrieve articles in all journals with MSC (2000): 20F05, 20K01


Additional Information

Miklós Abért
Affiliation: Alfréd Rényi Institute of Mathematics, Reáltanoda utca 13-15, H-1053, Budapest, Hungary
Email: abert@renyi.hu

DOI: https://doi.org/10.1090/S0002-9939-02-06490-0
Keywords: Presentations, Abelian groups
Received by editor(s): March 26, 2001
Received by editor(s) in revised form: August 2, 2001
Published electronically: June 12, 2002
Additional Notes: This research was supported by the Hungarian National Grant T29132.
Communicated by: Stephen D. Smith
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society