Symmetric presentations of Abelian groups

Author:
Miklós Abért

Journal:
Proc. Amer. Math. Soc. **131** (2003), 17-20

MSC (2000):
Primary 20F05, 20K01

DOI:
https://doi.org/10.1090/S0002-9939-02-06490-0

Published electronically:
June 12, 2002

MathSciNet review:
1929017

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We characterise the abelianisation of a group that has a presentation for which the set of relations is invariant under the full symmetric group acting on the set of generators. This improves a result of Emerson.

**[Bee]**M.J. Beetham, A set of generators and relations for the group , odd, J. London Math. Soc. 3 (1971), 554-557. MR**44:2806****[BC]**J.N. Bray, R.T. Curtis, A systematic approach to symmetric presentations II. Generators of order , Math. Proc. Cambridge Philos. Soc. 128 (2000), 1-20. MR**2000k:20032****[CHLR]**C. Campbell, G. Havas, S. Linton, E. Robertson, Symmetric presentations and orthogonal groups: The atlas of finite groups: ten years on (Birmingham, 1995), 1-10, London Math. Soc. Lecture Note Ser., 249, Cambridge Univ. Press, Cambridge, 1998. MR**99m:20112****[CR]**C.M. Campbell and E.F. Robertson, Some problems in group presentations, J. Korean Math. Soc. 19 (1983), 123-128. MR**84j:20030****[CRW]**C.M. Campbell, E.F. Robertson and P.D. Williams, Efficient presentations of the groups , prime, J. London Math. Soc. (2) 41 (1989), 69-77. MR**91g:20042****[Cox]**H.S.M. Coxeter, Symmetrical definitions for the binary polyhedral groups, Proc. Sympos. Pure Math. 1 (1959), 64-87. MR**22:6850****[CM]**H.S.M. Coxeter and W.O.J. Moser, Generators and relations for discrete groups, 4th edition (Springer, Berlin, 1979). MR**81a:20001****[Cu1]**R.T. Curtis, Symmetric presentations. I. Introduction, with particular reference to the Mathieu groups and , Groups, combinatorics & geometry (London Math. Soc. Lecture Note Ser., 165, Cambridge Univ. Press, Cambridge, 1992), 380-396. MR**94b:20038****[Cu2]**R.T. Curtis, Symmetric presentations. II. The Janko group , J. London Math. Soc. (2) 47 (1993), 294-308. MR**94b:20039****[CHB]**R.T. Curtis, A.M.A. Hammas, J.N. Bray, A systematic approach to symmetric presentations I. Involutory generators, Math. Proc. Cambridge Philos. Soc. 119 (1996), 23-34. MR**96k:20058****[Eme]**W. Emerson, Groups defined by permutations of a single word, Proc. Amer. Math. Soc. 21 (1969), 386-390. MR**39:1530****[RC]**E.F. Robertson and C.M. Campbell, Symmetric presentations, Group Theory (Walter de Gruyter, Berlin, New York, 1989), 497-506. MR**90a:20064**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
20F05,
20K01

Retrieve articles in all journals with MSC (2000): 20F05, 20K01

Additional Information

**Miklós Abért**

Affiliation:
Alfréd Rényi Institute of Mathematics, Reáltanoda utca 13-15, H-1053, Budapest, Hungary

Email:
abert@renyi.hu

DOI:
https://doi.org/10.1090/S0002-9939-02-06490-0

Keywords:
Presentations,
Abelian groups

Received by editor(s):
March 26, 2001

Received by editor(s) in revised form:
August 2, 2001

Published electronically:
June 12, 2002

Additional Notes:
This research was supported by the Hungarian National Grant T29132.

Communicated by:
Stephen D. Smith

Article copyright:
© Copyright 2002
American Mathematical Society